Skip to main content

Advertisement

Log in

Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We present a facile one-step hydrothermal method to in situ grow nickel selenide (Ni3Se2) nanosheets on nickel (Ni) foam (Ni3Se2/Ni) by using SeO2 as selenide source, Ni foam as nickel source and NaBH4 as reducing agent. The mole ratio of NaBH4/SeO2 is optimized as 4:1. An asymmetric supercapacitor (ASC) is fabricated by using as synthesized Ni3Se2/Ni as positive electrode and activated carbon (AC) as negative electrode. The synthesized materials and assembled devices are measured and characterized by a field emission scanning electron microscopy, powder X-ray diffraction, cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The results shows that the as-synthesized Ni3Se2/Ni electrode possesses a high specific capacitance of 854 F g−1 at 1 A g−1. The ASC can steadily operate with a high voltage of 1.6 V in 3 M KOH electrolytes, and possesses a superior energy density of 23.3 W h kg−1 at a power density of 398.1 W kg−1. In addition, the Ni3Se2//AC ASC shows excellent charge/discharge stability, after 5000 cycles the capacitance retention reaches 91.11%. The excellent performance of Ni3Se2/Ni electrode is mainly due to the pseudo-capacitive by Ni3Se2 and the 3D structure of Ni foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Wang, D. Chao, J. Liu, L. Li, L. Lai, J. Lin, Z. Shen, Nano Energy 7, 151–160 (2014)

    Article  Google Scholar 

  2. K. Qin, J. Kang, J. Li, E. Liu, C. Shi, Z. Zhang, X. Zhang, N. Zhao, Nano Energy 24, 158–164 (2016)

    Article  Google Scholar 

  3. K. Adib, M. Rahimi-Nasrabadi, Z. Rezvani, S. Pourmortazavi, F. Ahmadi, H. Naderi, M. Ganjali, J. Mater. Sci. Mater. Electron. 27, 4541–4550 (2016)

    Article  Google Scholar 

  4. S. Dhibar, S. Sahoo, C. Das, R. Singh, J. Mater. Sci. Mater. Electron. 24, 576–585 (2013)

    Article  Google Scholar 

  5. G. Cheng, T. Kou, J. Zhang, C. Si, H. Gao, Z. Zhang, Nano Energy 38, 155–166 (2017)

    Article  Google Scholar 

  6. Y. Hong, N. Li, H. Chen, P. Wang, W. Song, D. Fang, Energy Storage Mater. 11, 118–126 (2018)

    Article  Google Scholar 

  7. X. Zhang, W. Song, Z. Liu, H. Chen, T. Li, Y. Wei, D. Fang, J. Mater. Chem. A 5, 12793–12802 (2017)

    Article  Google Scholar 

  8. S. Wang, S. Jiao, D. Tian, H. Chen, H. Jiao, J. Tu, Y. Liu, D. Fang, Adv. Mater. 29, 1606349 (2017)

    Article  Google Scholar 

  9. X. Zhang, H. Chen, D. Fang, J. Solid State Electrochem. 20, 2835–2845 (2016)

    Article  Google Scholar 

  10. Y. Bao, X. Zhang, X. Zhang, L. Yang, X. Zhang, H. Chen, M. Yang, D. Fang, J. Power Sources 321, 120–125 (2016)

    Article  Google Scholar 

  11. S. Wang, S. Jiao, J. Wang, H. Chen, D. Tian, H. Lei, D. Fang, ACS Nano 11, 469–477 (2017)

    Article  Google Scholar 

  12. W. Wei, L. Mi, Y. Gao, Z. Zheng, W. Chen, X. Guan, Chem. Mater. 26, 3418–3426 (2014)

    Article  Google Scholar 

  13. C. Zhang, Y. Huang, S. Tang, M. Deng, Y. Du, ACS Energy Lett. 2, 759–768 (2017)

    Article  Google Scholar 

  14. S. Peng, L. Li, H. Wu, S. Madhavi, X. Lou, Adv. Energy Mater. 5, 1401172 (2015)

    Article  Google Scholar 

  15. W. Song, K. Song, L. Fan, ACS Appl. Mater. Interfaces 7, 4257–4264 (2015)

    Article  Google Scholar 

  16. W. Song, X. Li, L. Fan, Energy Storage Mater. 3, 113–122 (2016)

    Article  Google Scholar 

  17. Z. Tang, C. Tang, H. Gong, Adv. Funct. Mater. 22, 1272–1278 (2012)

    Article  Google Scholar 

  18. Y. Xu, Z. Lin, X. Zhong, X. Huang, N. Weiss, Y. Huang, X. Duan, Nat. Commun. 5, 5554 (2014)

    Article  Google Scholar 

  19. X. Ren, C. Guo, L. Xu, T. Li, L. Hou, Y. Wei, ACS Appl. Mater. Interfaces 7, 19930–19940 (2015)

    Article  Google Scholar 

  20. T. Zhu, H.B. Wu, Y. Wang, R. Xu, X.W. Lou, Adv. Energy Mater. 2, 1497–1502 (2012)

    Article  Google Scholar 

  21. J. Ji, L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R. Ruoff, ACS Nano 7, 6237–6243 (2013)

    Article  Google Scholar 

  22. C. Zhou, Y. Zhang, Y. Li, J. Liu, Nano Lett. 13, 2078–2085 (2013)

    Article  Google Scholar 

  23. N. Van Hoa, J. Shim, Electrochim. Acta 166, 302–309 (2015)

    Article  Google Scholar 

  24. K. Krishnamoorthy, G. Veerasubramani, S. Radhakrishnan, S. Kim, Chem. Eng. J. 266, 386–386 (2015)

    Article  Google Scholar 

  25. B. Yang, L. Yu, Q. Liu, J. Liu, W. Yang, H. Zhang, F. Wang, S. Hu, Y. Yuan, J. Wang, CrystEngComm 17, 4495–4501 (2015)

    Article  Google Scholar 

  26. X. Zou, Y. Zhang, Chem. Soc. Rev. 44, 5148–5180 (2015)

    Article  Google Scholar 

  27. C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, J. Mater. Chem. 19, 5772–5777 (2009)

    Article  Google Scholar 

  28. X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T. Maria, Y. Yang, H. Zhang, H. Hng, Q. Yan, Nano Res. 9, 643–652 (2010)

    Article  Google Scholar 

  29. X. Yan, X. Tong, L. Ma, Y. Tian, Y. Cai, C. Gong, M. Zhang, L. Liang, Mater. Lett. 124, 133–136 (2014)

    Article  Google Scholar 

  30. C. Tang, Z. Pu, Q. Liu, A.M. Asiri, X. Sun, Y. Luo, Y. He, ChemElectroChem 2, 1903–1907 (2015)

    Article  Google Scholar 

  31. Z. Zhang, Z. Huang, L. Ren, Y. Shen, X. Qi, J. Zhong, Electrochim. Acta 149, 316–323 (2014)

    Article  Google Scholar 

  32. R. Xu, R. Wu, Y. Shi, J. Zhang, B. Zhang, Nano Energy 24, 103–110 (2016)

    Article  Google Scholar 

  33. H. Lin, F. Liu, X. Wang, Y. Ai, Z. Yao, L. Chu, S. Han, X. Zhuang, Electrochim. Acta 191, 705–715 (2016)

    Article  Google Scholar 

  34. A. Sivanantham, S. Shanmugam, Appl. Catal. B 203, 485–493 (2017)

    Article  Google Scholar 

  35. A. Banerjee, S. Bhatnagar, K. Upadhyay, P. Yadav, S. Ogale, ACS Appl. Mater. Interfaces 6, 18844–18852 (2014)

    Article  Google Scholar 

  36. C. Wu, J. Cai, Q. Zhang, X. Zhou, Y. Zhu, L. Li, P. Shen, K. Zhang, Electrochim. Acta 169, 202–209 (2015)

    Article  Google Scholar 

  37. C. Wu, X. Wang, B. Ju, X. Zhang, L. Jiang, H. Wu, Int. J. Hydrog. Energy 37, 14365–14372 (2012)

    Article  Google Scholar 

  38. X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang, M. Liu, Nano Energy 11, 154–161 (2015)

    Article  Google Scholar 

  39. L. Fan, G. Liu, J. Wu, L. Liu, J. Lin, Y. Wei, Electrochim. Acta 137, 26–33 (2014)

    Article  Google Scholar 

  40. D. Kong, C. Cheng, Y. Wang, J. Wong, Y. Yang, H. Yang, J. Mater. Chem. A 3, 16150–16161 (2015)

    Article  Google Scholar 

  41. W. Hu, R. Chen, W. Xie, L. Zou, N. Qin, D. Bao, ACS Appl. Mater. Interfaces 6, 19318–19326 (2014)

    Article  Google Scholar 

  42. M. Sevilla, R. Mokaya, Energy Environ. Sci. 4, 1250–1280 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial joint support by the National Natural Science Foundation of China (Nos. 51472094, 91422301, 61474047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihuai Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Wu, J., Ye, B. et al. Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors. J Mater Sci: Mater Electron 29, 4649–4657 (2018). https://doi.org/10.1007/s10854-017-8416-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8416-y

Navigation