Skip to main content
Log in

Effect of the concentrations of nucleating agents ZrO2 and TiO2 on the crystallization of Li2O–Al2O3–SiO2 glass: an X-ray diffraction and TEM investigation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to study the effect of ZrO2 and TiO2 on the nucleation mechanism in a lithium aluminosilicate glass, a composition similar to that of the commercially available ROBAX™ glass (Schott AG) was modified. Glasses with different concentrations of ZrO2 and TiO2 were melted and studied using differential scanning calorimetry measurement. The glasses are thermally treated for different periods of time and at various temperatures and then investigated by X-ray diffraction and electron microscopy. Both scanning electron microscopy and transmission electron microscopy were applied to study size and shape of the formed crystal phases and possibly to obtain lattice plane distances. Increasing the concentration of the nucleation agents led to the spontaneous formation of Zr1−x Ti1+x O4 nano crystals during cooling. In any case, the nuclei contain much more titania than zirconia, possess an elongated shape, and are embedded in a shell enriched in alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Pannhorst W (1995) Overview. In: Bach H (ed) Low thermal expansion glass ceramics. Springer, Berlin, Heidelberg, New York, pp 1–12

    Chapter  Google Scholar 

  2. Dudek R, Krause C, Kristen K, Naß P, Schaupert K, Scheidler H, Schmidbauer W, Schober P, Taplan M, Wegert T, Weiss E (1995) Glass ceramics for household appliances. In: Bach H (ed) Low thermal expansion glass ceramics. Springer, Berlin, pp 75–80

    Google Scholar 

  3. Kiefer W, Pannhorst W (1995) Glass ceramics for household appliances. Zerodur®—A low thermal expansion glass ceramic for optical precision applications. In: Bach H (ed) Low thermal expansion glass ceramics. Springer, Berlin, pp 107–130

  4. Borens M, Gabelmann T, Leroux R, Münch T (1995) Glass ceramics for household appliances. In: Bach H (ed) Low thermal expansion glass ceramics. Springer, Berlin, pp 103–106

    Google Scholar 

  5. Petzold J (1967) Metastable crystalline solutions with quartz structure in the oxide system lithium oxide–magnesium oxide–zinc oxide–aluminum oxide–silicon dioxide. Glastech Ber 40:385–396

    Google Scholar 

  6. Müller G (1995) The scientific basis. In: Bach H (ed) Low thermal expansion glass ceramics. Springer, Berlin, pp 13–24

    Chapter  Google Scholar 

  7. Müller G, Hoffmann M, Neeff R (1988) Hydrogen substitution in lithium–aluminosilicates. J Mater Sci 23:1779–1785. doi:10.1007/BF01115722

    Article  Google Scholar 

  8. Pillars WW, Peacor DR (1973) The crystal structure of beta eucryptite as a function of temperature. Am Mineral 58:681–690

    Google Scholar 

  9. Thieme C, Görls H, Rüssel C (2015) Ba1 − x Sr x Zn2Si2O7—a new family of materials with negative and very high thermal expansion. Sci Rep 5:18040

    Article  Google Scholar 

  10. Thieme C, Rüssel C (2016) Very high or close to zero thermal expansion by the variation of the Sr/Ba ratio in Ba1 − x Sr x Zn2Si2O7—solid solutions. Dalton Trans 45:4888–4895

    Article  Google Scholar 

  11. Thieme C, Waurischk T, Heitmann SL, Rüssel C (2016) New family of materials with negative coefficients of thermal expansion: the effect of MgO, CoO, MnO, NiO or CuO on the phase stability and thermal expansion of solid solution phases derived from BaZn2Si2O7. J Inorg Chem 55:4476–4484

    Article  Google Scholar 

  12. Tauch D, Rüssel C (2005) Glass-ceramics with zero thermal expansion in the system BaO/Al2O3/B2O3. J Non-cryst Solids 351:2294–2298

    Article  Google Scholar 

  13. Lind C, Wilkinson AP, Hu Z, Short S, Jorgensen JD (1998) Synthesis and properties of the negative thermal expansion material cubic ZrMo2O8. Chem Mater 10:2335–2337

    Article  Google Scholar 

  14. Mary TA, Evans JSO, Vogt T, Sleight AW (1996) Negative thermal expansion from 0.3 to 1050 kelvin in ZrW2O8. Science 272:90–92

    Article  Google Scholar 

  15. Barrera GD, Bruno JAO, Barron THK, Allan NL (2005) Negative thermal expansion. J Phys Condens Matter 17:R217–R252

    Article  Google Scholar 

  16. Yamai I, Oota T (1985) Low-thermal-expansion polycrystalline zirconyl phosphate ceramic. J Am Ceram Soc 68:273–278

    Article  Google Scholar 

  17. Wurth R, Pascual MJ, Mather GC, Pablos-Martin A, Munoz F, Duran A, Cuello GJ, Rüssel C (2012) Crystallization mechanism of a multicomponent lithium alumino-silicate glass. Mater Chem Phys 134:1001–1006

    Article  Google Scholar 

  18. Wurth R, Munoz F, Müller M, Rüssel C (2009) Crystal growth in a multicomponent lithia aluminosilicate glass. Mater Chem Phys 116:433–437

    Article  Google Scholar 

  19. Dressler M, Ruedinger B, Deubener J (2014) Crystallization kinetics in a lithium alumosilicate glass using SnO2 and ZrO2 additives. J Noncryst Solids 389:60–65

    Article  Google Scholar 

  20. Shakeri MS (2013) Effect of Y2O3 on the crystallization kinetics of TiO2 nucleated LAS glass for the production of nanocrystalline transparent glass ceramics. Int J Miner Metall Mater 20:450–455

    Article  Google Scholar 

  21. Fernandes HR, Tulyaganov DU, Ferreira JMF (2013) The role of P2O5, TiO2 and ZrO2 as nucleating agents on microstructure and crystallization behaviour of lithium disilicate-based glass. J Mater Sci 48:765–773. doi:10.1007/s10853-012-6793-4

    Article  Google Scholar 

  22. Arvind A, Sarkar A, Shrikhande VK, Thyagi K, Kothiyal GP (2008) The effect of TiO2 addition on the crystallization and phase formation in lithium aluminum silicate (LAS) glasses nucleated by P2O5. J Phys Chem Solids 69:2622–2627

    Article  Google Scholar 

  23. Xingzhong G, Lingjie Z, Hui Y (2008) Effects of Li replacement on the nucleation, crystallization and microstructure of Li2O–Al2O3–SiO2 glass. J Noncryst Solids 354:4031–4036

    Article  Google Scholar 

  24. Bhattacharyya S, Höche T, Jinschek JR, Avramov I, Wurth R, Müller M, Rüssel C (2010) Direct evidence of Al-rich layers around nanosized ZrTiO4 in glass: putting the role of nucleation agents in perspective. Cryst Growth Des 10:379–385

    Article  Google Scholar 

  25. Höche T, Patzig C, Gemming T, Wurth R, Rüssel C, Avramov I (2012) Temporal evolution of diffusion barriers surrounding ZrTiO4 nuclei in lithia aluminosilicate glass–ceramics. Cryst Growth Des 12:1556–1563

    Article  Google Scholar 

  26. Raghuwanshi VS, Rüssel C, Hoell A (2014) Crystallization of ZrTiO4 nanocrystals in lithium-alumino-silicate glass ceramics: anomalous small-angle x-ray scattering investigation. Cryst Growth Des 14:2838–2845

    Article  Google Scholar 

  27. Höche T, Mäder M, Bhattacharyya S, Henderson GS, Gemming T, Wurth R, Rüssel C, Avramov I (2011) ZrTiO4 crystallization in nanosized liquid-liquid phase-separation droplets in glass—a quantitative XANES study. CrystEngComm 13:2550–2556

    Article  Google Scholar 

  28. Höche T, Gerlach JW, Petsch T (2006) Static-charging mitigation and contamination avoidance by selective carbon coating of TEM samples. Ultramicroscopy 106:981–985

    Article  Google Scholar 

  29. Dittmer M, Müller M, Rüssel C (2010) Self-organized nanocrystallinity in MgO–Al2O3–SiO2 glasses with ZrO2 as nucleating agent. Mater Chem Phys 124:1083–1088

    Article  Google Scholar 

  30. Hunger A, Carl G, Gebhardt A, Rüssel C (2008) Ultra-high thermal expansion glass-ceramics in the system MgO/Al2O3/TiO2/ZrO2/SiO2 by volume crystallization of cristobalite. J Noncryst Solids 354:5402–5407

    Article  Google Scholar 

  31. Wange P, Höche T, Rüssel C, Schnapp JD (2002) Microstructure-property relationship in high-strength MgO–Al2O3–SiO2–TiO2 glass–ceramics. J Non-Cryst Solids 298:137–145

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn Bad Godesberg (Germany) via Project Nr. RU 417/16-1 (Christian Rüssel), and Nr. HO1691/6-1 (Thomas Höche).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rüssel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleebusch, E., Patzig, C., Höche, T. et al. Effect of the concentrations of nucleating agents ZrO2 and TiO2 on the crystallization of Li2O–Al2O3–SiO2 glass: an X-ray diffraction and TEM investigation. J Mater Sci 51, 10127–10138 (2016). https://doi.org/10.1007/s10853-016-0241-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0241-9

Keywords

Navigation