Skip to main content
Log in

The role of P2O5, TiO2 and ZrO2 as nucleating agents on microstructure and crystallization behaviour of lithium disilicate-based glass

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effects of different nucleating agents (P2O5, TiO2 and ZrO2) on the crystallization behaviour and the properties of a parent glass with composition 23.7 Li2O–2.63 K2O–2.63 Al2O3–71.78 SiO2 (mol%) and SiO2/Li2O molar ratio far beyond that of stoichiometric lithium disilicate (LD, Li2Si2O5). The scanning electron microscopy examination of the as-cast non-annealed glasses revealed the occurrence of liquid–liquid phase separation for all the compositions. P2O5 revealed to be effective in promoting bulk crystallization of LD, while TiO2 and ZrO2 led to surface crystallization. Moreover, ZrO2 enhances the glass polymerization and shifts T p to higher temperatures, hindering crystallization. At 900 °C, TiO2-containing glasses feature LD and lithium metasilicate (LMS, Li2SiO3), while P2O5- and ZrO2-containing ones present monophasic LD and LMS glass–ceramics, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stookey SD (1959) Ind Eng Chem 51:805

    Article  CAS  Google Scholar 

  2. McMillan PW (1979) Glass–Ceramics. Academic Press, London

    Google Scholar 

  3. Morsi MM, Khater GA, Range KJ (2001) Glass Technol Eur J Glass Sci Technol Part A 42:160

    CAS  Google Scholar 

  4. Beall GH (1971) Advances in nucleation and crystallization in glass. American Ceramic Society, Columbus

    Google Scholar 

  5. Khater GA, Idris MH (2007) Ceram Int 33:233

    Article  CAS  Google Scholar 

  6. Khater GA, Idris MH (2005) Glass Sci Technol 78:189

    CAS  Google Scholar 

  7. Höland W, Beall G (2002) Glass-ceramic technology. The American Ceramic Society, Westerville

    Google Scholar 

  8. JMG Barrett FL, Clark David E, Gainesville FL, Hench Larry L, Gainesville FL (1980) The Board of Regents, State of Florida, University of Florida, Tallahassee

  9. Echeverría LM (1992) Boletin da la Sociedad Espanola de Cerámica y Vidrio 5:183

    Google Scholar 

  10. Headley TG, Loehman RE (1984) J Am Ceram Soc 67:620

    Article  CAS  Google Scholar 

  11. James PF (1985) J Non-Cryst Solids 73:517

    Article  CAS  Google Scholar 

  12. Ota R, Mishima N, Wakasugi T, Fukunaga J (1997) J Non-Cryst Solids 219:70

    Article  CAS  Google Scholar 

  13. Ray CS, Day DE, Huang W, Narayan KL, Cull TS, Kelton KF (1996) J Non-Cryst Solids 204:1

    Article  CAS  Google Scholar 

  14. Schweiger M (2000) Glastechnische Berichte-Glass Sci Technol 73:43

    Google Scholar 

  15. von Clausbruch CS, Schweiger M, Holand W, Rheinberger V (2000) J Non-Cryst Solids 263:388

    Article  Google Scholar 

  16. Zanotto ED (1997) J Non-Cryst Solids 219:42

    Article  CAS  Google Scholar 

  17. Doremus RH, Turkalo AM (1972) Phys Chem Glasses 13:14

    CAS  Google Scholar 

  18. Iqbal Y, Lee WE, Holland D, James PF (1999) J Mater Sci 34:4399. doi:10.1023/A:1004668701163

    Article  CAS  Google Scholar 

  19. James PF, McMillan PW (1970) Phys Chem Glasses 11:59

    CAS  Google Scholar 

  20. Bischoff C, Eckert H, Apel E, Rheinberger VM, Holand W (2011) Phys Chem Chem Phys 13:4540

    Article  CAS  Google Scholar 

  21. Guignard M, Cormier L, Montouillout V, Menguy N, Massiot D (2010) J Non-Cryst Solids 356:1368

    Article  CAS  Google Scholar 

  22. Shelby JE (1997) Introduction to glass science and technology. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  23. Barbieri L, Leonelli C, Manfredini T, Siligardi C, Corradi AB (1997) J Am Ceram Soc 80:3077

    Article  CAS  Google Scholar 

  24. Partridge G (1982) Glass Technol 23:133

    CAS  Google Scholar 

  25. Strnad Z (1986) Glass-ceramic materials. Elsevier, Amsterdam

    Google Scholar 

  26. Apel E, van’t Hoen C, Rheinberger V, Holand W (2007) J Eur Ceram Soc 27:1571

    Article  CAS  Google Scholar 

  27. Lin CC, Shen PY, Chang HM, Yang YJ (2006) J Eur Ceram Soc 26:3613. doi:10.1016/j.jeurceramsoc.2006.01.010

    Article  CAS  Google Scholar 

  28. Goharian P, Nemati A, Shabanian M, Afshar A (2010) J Non-Cryst Solids 356:208

    Article  CAS  Google Scholar 

  29. Matusita K, Sakka S, Maki T, Tashiro M (1975) J Mater Sci 10:94

    Article  CAS  Google Scholar 

  30. Partridge G (1979) Glass Technol 20:246

    CAS  Google Scholar 

  31. Ananthanarayanan A, Kothiyal GP, Montagne L, Revel B (2010) J Solid State Chem 183:120

    Article  CAS  Google Scholar 

  32. Ananthanarayanan A, Kothiyal GP, Montagne L, Revel B (2010) J Solid State Chem 183:1416

    Article  CAS  Google Scholar 

  33. Zheng X, Wen G, Song L, Huang X (2008) Acta Mater 56:549

    Article  CAS  Google Scholar 

  34. Höland W, Apel E, van Hoen C, Rheinberger V (2006) J Non-Cryst Solids 352:4041. doi:10.1016/j.jnoncrysol.2006.06.039

    Article  Google Scholar 

  35. HR Fernandes, DU Tulyaganov, A Goel, MJ Ribeiro, MJ Pascual, JMF Ferreira (2010) J Eur Ceram Soc 30: 2017. Doi10.1016/j.jeurceramsoc.2010.04.017

  36. HR Fernandes, DU Tulyaganov, IK Goel, JMF Ferreira (2008) J Am Ceram Soc 91: 3698. Doi:10.1111/j.1551-2916.2008.02724.x

  37. O’Donnella MD, Hill RG, Karpukhina N, Law RV (2011) Dent Mater 27:990

    Article  Google Scholar 

  38. Vogel W (1971) Structure and crystallization of glasses. Pergamon Press, Leipzig

    Google Scholar 

  39. Brow RK (2000) J Non-Cryst Solids 263–264:1

    Article  Google Scholar 

  40. Dietzel A (1942) Kolloid-Z 100:368

    Article  CAS  Google Scholar 

  41. Dargaud O, Cormier L, Menguy N et al (2010) J Non-Cryst Solids 356:2928

    Article  CAS  Google Scholar 

  42. Brauer DS, Karpukhina N, Law RV, Hill RG (2010) J Non-Cryst Solids 356:2626

    Article  CAS  Google Scholar 

  43. Ray CS, Huang WH, Day DE (1991) J Am Ceram Soc 74:60

    Article  CAS  Google Scholar 

  44. Donald IW (1995) J Mater Sci 30:904. doi:10.1007/BF01178424

    Article  CAS  Google Scholar 

  45. Vogel W (1994) Glass chemistry. Springer, Berlin

    Book  Google Scholar 

  46. Smith RI, Howie RA, West AR, Aragon PA, Villafuerte CME (1990) Acta Crystallogr A C46:363

    CAS  Google Scholar 

Download references

Acknowledgements

Hugo R. Fernandes thanks FCT for the PhD grant (SFRH/BD/41307/2007). All authors are grateful for the financial support from CICECO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo R. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, H.R., Tulyaganov, D.U. & Ferreira, J.M.F. The role of P2O5, TiO2 and ZrO2 as nucleating agents on microstructure and crystallization behaviour of lithium disilicate-based glass. J Mater Sci 48, 765–773 (2013). https://doi.org/10.1007/s10853-012-6793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6793-4

Keywords

Navigation