Skip to main content

Advertisement

Log in

Effect of hot calendering on physical properties and water vapor transfer resistance of bacterial cellulose films

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work investigates the effect of hot calendering on bacterial cellulose (BC) films properties, aiming the achievement of good transparency and barrier property. A comparison was made using vegetal cellulose (VC) films on a similar basis weight of around 40 g.m−2. The optical–structural, mechanical, and barrier properties of BC films were studied and compared with those of highly beaten VC films. The Young’s moduli and tensile index of the BC films are much higher than those obtained for VC (14.5–16.2 vs 10.8–8.7 GPa and 146.7–64.8 vs 82.8–40.3 N.m.g−1), respectively. Calendering increased significantly the transparency of BC films from 53.0 to 73.0 %. The effect of BC ozonation was also studied. Oxidation with ozone somewhat enhanced the brightness and transparency of the BC films, but at the expenses of slightly lower mechanical properties. BC films exhibited a low water vapor transfer rate, when compared to VC films and this property decreased by around 70 % following calendering, for all films tested. These results show that calendering could be used as a process to obtain films suitable for food packaging applications, where transparency, good mechanical performance, and barrier properties are important. The BC films obtained herein are valuable products that could be a good alternative to the highly used plastics in this industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibers and nanocomposites. J Mater Sci 45:1–33. doi:10.12691/jmpc-2-1-1

    Article  Google Scholar 

  2. Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Ganan P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohyd Polym 84:96–102

    Article  Google Scholar 

  3. Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107

    Article  Google Scholar 

  4. Santos SM, Carbajo JM, Gomez N, Quintana E, Ladero M, Sanchez A, Chinga-Carrasco G, Villar JC (2016) Use of bacterial cellulose in degraded paper restoration Part I: application on model papers. J Mater Sci 51(3):1541–1552. doi:10.1007/s10853-015-9476-0

    Article  Google Scholar 

  5. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  6. Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:1–10

    Article  Google Scholar 

  7. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106

    Article  Google Scholar 

  8. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    Article  Google Scholar 

  9. Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T (2008) Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose 15:111–120

    Article  Google Scholar 

  10. Iguchi M, Yamanaka S, Budhiono A (2000) Review: bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270. doi:10.1016/j.carbpol.2012.03.045

    Article  Google Scholar 

  11. Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506

    Article  Google Scholar 

  12. Delgado-Aguilar M, González I, Pèlach MA, De La Fuente E, Negro C, Mutje P (2015) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22:789–802

    Article  Google Scholar 

  13. Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61:101–110

    Article  Google Scholar 

  14. Charles LA, Waterhouse JF (1987) The effect of supercalendering on the strength properties of paper. Institute of Paper Chemistry. Technical Paper Series, number 244

  15. Oliveira C, Carvalho V, Domingues L, Gama FM (2015) Recombinant CBM-fusion technology—applications overview. Biotechnol Adv 33(3–4):358–369

    Article  Google Scholar 

  16. Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J (2011) Nassiopoulos (2011) cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 837875:1–35

    Google Scholar 

  17. Lee K-Y, Tammelin T, Schulfter K, Kiiskinen H, Samela J, Bismarck A (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. Appl. Mater. Interfaces 4(8):4078–4086

    Article  Google Scholar 

  18. Dhar P, Bhardwaj U, Kumar A, Katiyar V (2014) Cellulose nanocrystals: a potential nanofiller for food packaging applications. In: Komolprasert V, Turowski P (eds) Food Additives and Packaging, vol 1162. American Chemical Society, Washington, pp 197–239

    Google Scholar 

  19. Vernhes P, Bloch J, Blayo A, Pineaux P (2009) Effect of calendering on paper surface micro-structure: a multi-scale analysis. J Mater Process Technol 209:5204–5210

    Article  Google Scholar 

  20. Leskelä M (1998) Optical properties chapter 4. In: Niskanen K (ed) Paper physics (Book 16). Fapet, Helsinki

    Google Scholar 

  21. Hestrin S, Schramm M (1954) Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352

    Article  Google Scholar 

  22. Sihtola H, Kyrklund B, Laamanen L, Palenius L (1963) Comparison and conversion of viscosity and DP values by different methods. Paperi Ja Puu 45(4a):225–232

    Google Scholar 

  23. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1962) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Tex Res J 29:786–794

    Article  Google Scholar 

  24. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Article  Google Scholar 

  25. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691

    Article  Google Scholar 

  26. González I, Alcalá M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutjé P (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609

    Article  Google Scholar 

  27. Pouyet F, Lachenal D, Das S, Hirat C (2013) Minimizing viscosity loss during totally chlorine-free bleaching of hardwood kraft pulp. BioResources 8(1):238–249

    Google Scholar 

  28. Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A (2015) Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 16(7):14832–14849

    Article  Google Scholar 

  29. Gil N, Gil C, Amaral ME, Costa AC, Duarte AP (2009) Use of enzymes to improve the refining of a bleached eucalyptus globulus kraft pulp. Biochem Eng J 46:89–95

    Article  Google Scholar 

  30. Retegi A, Gabilondo N, Peña C, Zuluaga R, Castro C, Gañan P, de la Caba K, Mondragon I (2010) Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose 17:661–669

    Article  Google Scholar 

  31. Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structure. Biomacromolecules 11:2195–2198

    Article  Google Scholar 

  32. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598

    Article  Google Scholar 

  33. Zhang L, Batchelor W, Varanasi S, Tsuzuki T, Wan X (2012) Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 19:561–574

    Article  Google Scholar 

  34. Biermann CJ (1996) Handbook of pulping and papermaking, 2nd edn. Academic Press, San Diego

    Google Scholar 

  35. Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80:93–97

    Article  Google Scholar 

  36. Yousefi H, Faezipour M, Hedjazi S, Mousavi MM, Azusa M, Heidari AH (2013) Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Ind Crop Prod 43:732–737

    Article  Google Scholar 

  37. Chirat C, Lachenal D (1994) Effect of ozone on pulp components application to bleaching of Kraft pulps. Holzforschung 48(Suppl):133–139

    Article  Google Scholar 

  38. Fall AB, Lindström SB, Sundman O, Ödberg L, Wagberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27(18):11332–11338

    Article  Google Scholar 

  39. Fendler A, Villanueva MP, Giminez E, Lagarón JM (2007) Characterization of the barrier properties of composites of HDPE and purified cellulose fibers. Cellulose 14:427–438

    Article  Google Scholar 

  40. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  Google Scholar 

  41. Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain. Chem. Process 2:23

    Article  Google Scholar 

  42. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145. doi:10.1007/BF01139032

    Article  Google Scholar 

  43. Retulainen E, Moss P, Nieminen K (1997) Effect of calendering and wetting on paper properties. J Pulp Pap Sci 23(1):J34–J39

    Google Scholar 

Download references

Acknowledgements

The authors thank FCT (Fundação para a Ciência e Tecnologia) and FEDER (Fundo Europeu de Desenvolvimento Regional) for the financial support of the project FCT PTDC/AGR-FOR/3090/2012—FCOMP-01-0124-FEDER-027948 and the awarding of a research grant for Vera Costa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Simões.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, V.L.D., Costa, A.P., Amaral, M.E. et al. Effect of hot calendering on physical properties and water vapor transfer resistance of bacterial cellulose films. J Mater Sci 51, 9562–9572 (2016). https://doi.org/10.1007/s10853-016-0112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0112-4

Keywords

Navigation