Skip to main content

Advertisement

Log in

Cellulose film with air barrier and moisture-conducting character fabricated by NMMO

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The use of natural polymer to prepare degradable films is a sustainable production concept that can improve resource utilization and reduce the environmental pollution caused by traditional packaging waste or another field. Here, a regenerated cellulose film was prepared through the N-methylmorpholine-N-oxide (NMMO) cellulose system. The most important advantage of the developed film is that it has air barrier and moisture conduction character, because the surface of films is dense and does not allow small molecules like oxygen to pass through, but water molecules can move freely in the film by means of hydrogen bonds. This shows that the cellulose film has applications in textiles, food preservation, medicine and other fields. Significantly, the film has good tensile strength (maximum strength reaches 149.5 MPa) and light transmittance (more than 80% at 600 nm). Moreover, the effect of coagulation bath concentration, temperature and the content of glycerin on film strength was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Raghuwanshi VS, Garnier G (2019) Cellulose nano-films as bio-interfaces. Front Chem 7:535. https://doi.org/10.3389/fchem.2019.00535

    Article  CAS  Google Scholar 

  2. Alexandridis P, Ghasemi M, Furlani EP, Tsianou M (2018) Solvent processing of cellulose for effective bioresource utilization. Curr Opin Green Sustain Chem 14:40–52. https://doi.org/10.1016/j.cogsc.2018.05.008

    Article  Google Scholar 

  3. Rabideau BD, Ismail AE (2015) Effect of water content in N-methylmorpholine N-oxide/cellulose solutions on thermodynamics, structure, and hydrogen bonding. J Phys Chem B 119(48):15014–15022. https://doi.org/10.1021/acs.jpcb.5b07500

    Article  CAS  Google Scholar 

  4. Mao Z, Cao Y, Jie X, Kang G, Zhou M, Yuan Q (2010) Dehydration of isopropanol–water mixtures using a novel cellulose membrane prepared from cellulose/N-methylmorpholine-N-oxide/H2O solution. Sep Purif Technol 72(1):28–33. https://doi.org/10.1016/j.seppur.2010.01.002

    Article  CAS  Google Scholar 

  5. Wei Y, Wu K, Liu N, Zhang Y, Wang H (2018) Cellulose acetate fibers with improved mechanical strength prepared with aqueous NMMO as solvent. Cellulose 25(11):6395–404. https://doi.org/10.1007/s10570-018-2032-8

    Article  CAS  Google Scholar 

  6. Duan J, Liang X, Cao Y, Wang S, Zhang L (2015) High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture. Macromolecules 48(8):2706. https://doi.org/10.1021/acs.macromol.5b00117

    Article  CAS  Google Scholar 

  7. Trygg J, Fardim P (2011) Enhancement of cellulose dissolution in water-based solvent via ethanol–hydrochloric acid pretreatment. Cellulose 18(4):987–94. https://doi.org/10.1007/s10570-011-9550-y

    Article  CAS  Google Scholar 

  8. Fukaya Y, Hayashi K, Wada M (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10(1):44–6. https://doi.org/10.1039/B713289A

    Article  CAS  Google Scholar 

  9. Ahmed ASS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–26. https://doi.org/10.1021/bm0493685

    Article  CAS  Google Scholar 

  10. Heinze T, Koschella A (2005) Solvents applied in the field of cellulose chemistry: a mini review. Polímeros 15(2):84–90. https://doi.org/10.1590/S0104-14282005000200005

    Article  CAS  Google Scholar 

  11. Swatloski RP, Spear SK, Holbrey JD (2002) Dissolution of cellulose [correction of cellose] with ionic liquids. J Am Chem Soc 124(18):4974–5. https://doi.org/10.1021/ja025790m

    Article  CAS  Google Scholar 

  12. Matsumoto T, Tatsumi D, Tamai N, Takaki T (2001) Solution properties of celluloses from different biological origins in LiCl DMAc. Cellulose 8(4):275–82. https://doi.org/10.1023/A:1015162027350

    Article  CAS  Google Scholar 

  13. Heinze T, Dicke R, Koschella A, Henning Kull A, Klohr E-A, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent %J macromolecular chemistry and physics. Macromol Chem Phys 201(6):627–31. https://doi.org/10.1002/(SICI)1521-3935(20000301)201:6

    Article  CAS  Google Scholar 

  14. Xie W, Li T, Tiraferri A et al (2021) Toward the next generation of sustainable membranes from green chemistry principles. ACS Sustain Chem Eng 9(1):50–75. https://doi.org/10.1021/acssuschemeng.0c07119

    Article  CAS  Google Scholar 

  15. Nunes SP, Zeynep Culfaz-Emecen P, Ramon GZ et al (2020) Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes. J Membr Sci 598:117761. https://doi.org/10.1016/j.memsci.2019.117761

    Article  CAS  Google Scholar 

  16. Xu Z, Liao J, Tang H, Efome JE, Li N (2018) Preparation and antifouling property improvement of Tröger’s base polymer ultrafiltration membrane. J Membr Sci 561:59–68. https://doi.org/10.1016/j.memsci.2018.05.042

    Article  CAS  Google Scholar 

  17. Zhang Y, Tong X, Zhang B, Zhang C, Zhang H, Chen Y (2018) Enhanced permeation and antifouling performance of polyvinyl chloride (PVC) blend Pluronic F127 ultrafiltration membrane by using salt coagulation bath (SCB). J Membr Sci 548:32–41. https://doi.org/10.1016/j.memsci.2017.11.003

    Article  CAS  Google Scholar 

  18. Qi Y, Lin S, Lan J, Zhan Y, Guo J, Shang J (2021) Fabrication of super-high transparent cellulose films with multifunctional performances via postmodification strategy. Carbohydr Polym 260:117760. https://doi.org/10.1016/j.carbpol.2021.117760

    Article  CAS  Google Scholar 

  19. Wan J, Diao H, Yu J, Song G, Zhang J (2021) A biaxially stretched cellulose film prepared from ionic liquid solution. Carbohydr Polym 260:117816. https://doi.org/10.1016/j.carbpol.2021.117816

    Article  CAS  Google Scholar 

  20. Zhang Y, Tian Z, Fu Y, Wang Z, Qin M, Yuan Z (2020) Responsive and patterned cellulose nanocrystal films modified by N-methylmorpholine-N-oxide. Carbohydr Poly 228:115387. https://doi.org/10.1016/j.carbpol.2019.115387

    Article  CAS  Google Scholar 

  21. Zhang L, Zhou J, Zhang L (2013) Structure and properties of β-cyclodextrin/cellulose hydrogels prepared in NaOH/urea aqueous solution. Carbohydr Poly 94(1):386–393. https://doi.org/10.1016/j.carbpol.2012.12.077

    Article  CAS  Google Scholar 

  22. Zheng B, Luo Y, Liao H, Zhang C (2017) Investigation of the crystallinity of suspension plasma sprayed hydroxyapatite coatings. Eur Ceram Soc 37(15):5017–5021. https://doi.org/10.1016/j.jeurceramsoc.2017.07.007

    Article  CAS  Google Scholar 

  23. Yuping Z, Xiao C (2010) Discussion on crystallinity calculated by the technology of peak separation. Res Explor Lab 29(03):41–43

    Google Scholar 

  24. Sayyed AJ, Deshmukh NA, Pinjari DV (2019) A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26(5):2913–2940. https://doi.org/10.1007/s10570-019-02318-y

    Article  CAS  Google Scholar 

  25. Cheng LP, Soh Y, Dwan AH, Gryte C (1994) An improved model for mass transfer during the formation of polymeric membranes by the immersion-precipitation process. J Poly Sci Part B: Poly Phys 32:1413–1425. https://doi.org/10.1002/polb.1994.090320813

    Article  CAS  Google Scholar 

  26. Cheng L-P, Dwan A-H, Gryte CC (1995) Membrane formation by isothermal precipitation in polyamide-formic acid-water systems II. Precipitation dynamics. J Poly Sci Part B: Poly Phys 33(2):223–225. https://doi.org/10.1002/polb.1995.090330207

    Article  CAS  Google Scholar 

  27. Ilyas A, Gebreyohannes AY, Qian J, Reynaerts D, Kuhn S, Vankelecom IFJ (2021) Micro-patterned membranes prepared via modified phase inversion: effect of modified interface on water fluxes and organic fouling. J Colloid Interface Sci 585:490–504. https://doi.org/10.1016/j.jcis.2020.10.031

    Article  CAS  Google Scholar 

  28. Reuvers AJ, van den Berg JWA, Smolders CA (1987) Formation of membranes by means of immersion precipitation: Part I. A model to describe mass transfer during immersion precipitation. J Membr Sci 34(1):45–65. https://doi.org/10.1016/S0376-7388(00)80020-4

    Article  CAS  Google Scholar 

  29. Reuvers AJ, Smolders CA (1987) Formation of membranes by means of immersion precipitation: Part II. the mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water. J Membr Sci 34(1):67–86. https://doi.org/10.1016/S0376-7388(00)80021-6

    Article  CAS  Google Scholar 

  30. Shahbazi H, Tataei M, Enayati MH, Shafeiey A, Azizi Malekabadi M (2019) Structure-transmittance relationship in transparent ceramics. J Alloy Comp 785:260–285. https://doi.org/10.1016/j.jallcom.2019.01.124

    Article  CAS  Google Scholar 

  31. Gobrecht A, Bendoula R, Roger J-M, Bellon-Maurel V (2015) Combining linear polarization spectroscopy and the representative layer theory to measure the beer-lambert law absorbance of highly scattering materials. Anal Chim Acta 853:486–494. https://doi.org/10.1016/j.aca.2014.10.014

    Article  CAS  Google Scholar 

  32. Tang C, Liu H (2008) Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance. Compos Part A: Appl Sci Manuf 39(10):1638–1643. https://doi.org/10.1016/j.compositesa.2008.07.005

    Article  CAS  Google Scholar 

  33. Shandilya M, Thakur S, Thakur S (2020) Magnetic amendment in the fabrication of environment friendly and biodegradable iron oxide/ethyl cellulose nanocomposite membrane via electrospinning. Cellulose 27(17):10007–10017. https://doi.org/10.1007/s10570-020-03455-5

    Article  CAS  Google Scholar 

  34. Zhang Y (2002) Dong Hua University,

  35. van de Witte P, Dijkstra PJ, van den Berg JWA, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117(1):1–31. https://doi.org/10.1016/0376-7388(96)00088-9

    Article  Google Scholar 

  36. Bang YH, Lee S, Park JB, Cho HH (1999) Effect of coagulation conditions on fine structure of regenerated cellulosic films made from cellulose/N-methylmorpholine-N-oxide/H2O systems. J Appl Polym Sci 73(13):2681–2690. https://doi.org/10.1002/(SICI)1097-4628(19990923)73:13

    Article  CAS  Google Scholar 

  37. Ichwan M, Son T-W (2012) Preparation and characterization of dense cellulose film for membrane application. J Appl Polym Sci 124(2):1409–1418. https://doi.org/10.1002/app.35104

    Article  CAS  Google Scholar 

  38. Laity PR, Glover PM, Hay JN (2002) Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer 43(22):5827–5837. https://doi.org/10.1016/S0032-3861(02)00531-1

    Article  CAS  Google Scholar 

  39. Lee S, Kim J, Lee C-H (1999) Analysis of CaSO4 scale formation mechanism in various nanofiltration modules. J Membr Sci 163(1):63–74. https://doi.org/10.1016/S0376-7388(99)00156-8

    Article  CAS  Google Scholar 

  40. Shi S, Zhu K, Chen X, Hu J, Zhang L (2019) Cross-linked cellulose membranes with robust mechanical property, self-adaptive breathability, and excellent biocompatibility. ACS Sustain Chem Eng 7(24):19799–19806. https://doi.org/10.1021/acssuschemeng.9b05092

    Article  CAS  Google Scholar 

  41. Duan Bo, Chang C, Na Zhang (2014) Structure and properties of films fabricated from chitin solution by coagulating with heating. J Appl Polym Sci. 131(4):1001–1007 https://doi.org/10.1002/app.39538

    Article  CAS  Google Scholar 

  42. Jianqing W, Li Z (2008) Preparation of cellulose films and mechanical properties by NMMO. J Tianjin Univ SciTechnol 23(04):9–13

    Google Scholar 

  43. Yaopeng Z, HuiliXinyuan SS, Xuechao H (2002) Morphology, permeation and cutoff properties of cellulose membranes prepared by NMMO method. Memb Sci Technol 22(4):13–20

    Google Scholar 

  44. Zheng X, Huang F, Chen L, Huang L, Cao S, Ma X (2019) Preparation of transparent film via cellulose regeneration: correlations between ionic liquid and film properties. Carbohy Poly 203:214–218. https://doi.org/10.1016/j.carbpol.2018.09.060

    Article  CAS  Google Scholar 

  45. Yan C, Wang R, Wan J et al (2016) Cellulose/microalgae composite films prepared in ionic liquids. Algal Res 20:135–141. https://doi.org/10.1016/j.algal.2016.09.024

    Article  Google Scholar 

  46. Pang J, Wu M, Zhang Q et al (2015) Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydr Poly 121:71–78. https://doi.org/10.1016/j.carbpol.2014.11.067

    Article  CAS  Google Scholar 

  47. Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10:1597–1602. https://doi.org/10.1021/bm9001975

    Article  CAS  Google Scholar 

  48. Wang C, Shi J, He M et al (2018) High strength cellulose/ATT composite films with good oxygen barrier property for sustainable packaging applications. Cellulose 25(7):4145–4154. https://doi.org/10.1007/s10570-018-1855-7

    Article  CAS  Google Scholar 

  49. Liu Y, Xu S, Jing M, Wei Y, Deng H, Fu Q (2019) Preparation of high-performance cellulose composite membranes from LiOH/urea solvent system. Nanocomposites 5(2):49–60. https://doi.org/10.1080/20550324.2019.1619962

    Article  CAS  Google Scholar 

  50. Khare VP, Greenberg AR, Kelley SS, Pilath H, Juhn Roh I, Tyber J (2007) Synthesis and characterization of dense and porous cellulose films. J Appl Polym Sci. 105(3):1228–1236. https://doi.org/10.1002/app.25888

    Article  CAS  Google Scholar 

  51. Kim C-J, Khan W, Kim D-H, Cho K-S, Park S-Y (2011) Graphene oxide/cellulose composite using NMMO monohydrate. Carbohydr Polym 86(2):903–909. https://doi.org/10.1016/j.carbpol.2011.05.041

    Article  CAS  Google Scholar 

  52. Niu X, Huan S, Li H, Pan H, Rojas OJ (2021) Transparent films by ionic liquid welding of cellulose nanofibers and polylactide: enhanced biodegradability in marine environments. J Hazard Mater 402:124073. https://doi.org/10.1016/j.jhazmat.2020.124073

    Article  CAS  Google Scholar 

  53. Wang Y, Yuan L, Tian H, Zhang L, Lu A (2019) Strong, transparent cellulose film as gas barrier constructed via water evaporation induced dense packing. J Membr Sci 585:99–108. https://doi.org/10.1016/j.memsci.2019.04.059

    Article  CAS  Google Scholar 

  54. Li R, Zhang L, Xu M (2012) Novel regenerated cellulose films prepared by coagulating with water: structure and properties. Carbohydr Polym 87(1):95–100. https://doi.org/10.1016/j.carbpol.2011.07.023

    Article  CAS  Google Scholar 

  55. Zhu K, Shi S, Cao Y, Lu A, Hu J, Zhang L (2019) Robust chitin films with good biocompatibility and breathable properties. Carbohydr Polym 212:361–367. https://doi.org/10.1016/j.carbpol.2019.02.054

    Article  CAS  Google Scholar 

  56. Yue Y, Gong X, Jiao W et al (2021) In-situ electrospinning of thymol-loaded polyurethane fibrous membranes for waterproof, breathable, and antibacterial wound dressing application. J Colloid Interface Sci 592:310–318. https://doi.org/10.1016/j.jcis.2021.02.048

    Article  CAS  Google Scholar 

  57. Patil PP, Reagan MR, Bohara RA (2020) Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. Int J Biol Macromol 164:4613. https://doi.org/10.1016/j.ijbiomac.2020.08.041

    Article  CAS  Google Scholar 

  58. Hu J, Mondal S (2006) In: Mattila HR (ed) Intelligent Textiles and ClothingWoodhead Publishing, 9 - Study of shape memory polymer films for breathable textiles, 143–164,  https://doi.org/10.1533/9781845691622.2.143.

    Chapter  Google Scholar 

  59. Tehrani-Bagha AR (2019) Waterproof breathable layers – A review. Adv Colloid Interface Sci 268:114–135. https://doi.org/10.1016/j.cis.2019.03.006

    Article  CAS  Google Scholar 

  60. Zhou Z, Ma J, Li K et al (2021) A plant leaf-mimetic membrane with controllable gas permeation for efficient preservation of perishable products. ACS Nano 15(5):8742-8752. https://doi.org/10.1021/acsnano.1c00997

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22005226) and Hubei Provincial Department of Education Science and Technology Research Program (204013)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guizhen Ke, Shuangquan Wu or Kunkun Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. All the authors listed have approved the manuscript enclosed.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Li, Y., Liu, X. et al. Cellulose film with air barrier and moisture-conducting character fabricated by NMMO. J Mater Sci 56, 18313–18326 (2021). https://doi.org/10.1007/s10853-021-06499-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06499-5

Navigation