Skip to main content
Log in

Morphology and properties of poly(methyl methacrylate) (PMMA) filled with mesoporous silica (MCM-41) prepared by melt compounding

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reports on the morphologies of poly(methyl methacrylate) (PMMA)/mesoporous silica (MCM-41) composites prepared by melt compounding with various MCM-41 contents in the range of 0.1–5 wt%, the interactions between the polymer and filler in these composites, and their thermomechanical, mechanical and thermal degradation properties. The composites formed transparent films at low filler loadings (<0.5 wt%) because of well-dispersed, unagglomerated particles. The presence of polymer did not alter the pore dimensions in the MCM-41 structure and it maintained its hexagonal structure, even though the polymer chains partially penetrated the pores during composite preparation. The PMMA interacted with the MCM-41 through hydrogen bonding. The glass transition temperature, as well as storage and loss modulus of PMMA increased with addition of, and increase in the amount of, MCM-41 due to the interaction of the polymer chains with the porous filler which restricted the mobility of the polymer chains and increased the stiffness of the composites. The thermal stability of PMMA apparently increased in the presence of MCM-41, although this observation probably was the result of delayed mass loss because of the trapping of volatile degradation products in the pores of MCM-41. The presence of MCM-41, up to 1.0 wt%, increased the impact strength of PMMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wei L, Hu N, Zhang Y (2010) Synthesis of polymer-mesoporous silica nanocomposites. Materials 3:4066–4079. doi:10.3390/ma3074066

    Google Scholar 

  2. Wacharawichanant S, Thongyai S, Phutthaphan A, Eiamsam-ang C (2008) Effect of particle sizes of zinc oxide on mechanical, thermal and morphological properties of polyoxymethylene/zinc oxide nanocomposites. Polym Test 27:971–976. doi:10.1016/j.polymertesting.2008.08.012

    Article  Google Scholar 

  3. Ramanathan T, Stankovich S, Dikin DA, Liu H, Shen H, Nguyen ST, Brinson LC (2007) Graphitic nanofillers in PMMA nanocomposites—an investigation of particle size and dispersion and their influence on nanocomposites properties. J Polym Sci Part B 45:2097–2112. doi:10.1002/polb.21187

    Article  Google Scholar 

  4. Zhang FA, Song C, Yu CL (2011) Effects of preparation methods on the property of PMMA/SBA-15 mesoporous silica composites. J Polym Res 18:1757–1764. doi:10.1007/s10965-011-9582-x

    Article  Google Scholar 

  5. Caponetti E, Minoja A, Saladino ML, Spinella A (2008) Characterization of Nd-MCM-41 obtained by impregnation. Microporous Mesoporous Mater 113:490–498. doi:10.1016/j.micromeso.2007.12.007

    Article  Google Scholar 

  6. Zhang FA, Luo M, Chen ZJ, Wei ZB, Pinnavaia TJ (2014) Effects of mesoporous silica particles on the emulsion polymerization of methyl methacrylate. Polym Eng Sci 54:2746–2752. doi:10.1002/pen.23830

    Article  Google Scholar 

  7. Zhang FA, Lee DK, Pinnavaia TJ (2009) PMMA-mesocellular foam silica nanocomposites prepared through batch emulsion and compression molding. Polymer 50:4768–4774. doi:10.1016/j.polymer.2009.08.007

    Article  Google Scholar 

  8. Etienne S, Becker C, Ruch D, Grignard B, Cartigny G, Detrembleur C, Calberg C, Jerome R (2007) Effects of incorporation of modified silica nanoparticles on the mechanical and thermal properties of PMMA. J Therm Anal Calorim 87:101–104. doi:10.1007/s10973-006-7827-4

    Article  Google Scholar 

  9. Zheng S, Li J, Guo Q, Mi Y (1997) In situ polymerization preparation of blends of poly (methyl methacrylate) and poly (styrene-co-acrylonitrile). J Mater Sci 32:3463–3468. doi:10.1023/A:1018633003127

    Article  Google Scholar 

  10. Zhang FA, Lee DK, Pinnavaia TJ (2010) PMMA/mesoporous nanocomposites: effect of framework structure and pore size on thermomechanical properties. Polym Chem 1:107–113. doi:10.1039/b9py00232d

    Article  Google Scholar 

  11. Perez LD, Giraldo LF, Brostow W, Lopez BL (2007) Poly(methyl acrylate) plus mesoporous silica nanohybrids: mechanical and thermophysical properties. e-Polymers 7:324–334. doi:10.1515/epoly.2007.7.1.324

    Article  Google Scholar 

  12. Run MT, Wu SZ, Zhang DY, Wu G (2007) A polymer/mesoporous molecular sieve composite: preparation structure and properties. Mater Chem Phys 105:341–347. doi:10.1016/j.matchemphys.2007.04.070

    Article  Google Scholar 

  13. Dinari M, Mallakpour S, Mohammadnezhad G (2015) Organo-modification of mesoporous SBA-15 with chiral diacid and its utilization for the preparation of l-phenylalanine-based poly(amide-imide) nanocomposites. Polym-Plast Technol Eng 54:549–555. doi:10.1080/03602559.2014.961085

    Article  Google Scholar 

  14. Dinari M, Mohammadnezhad G, Nabiyan A (2015) Organo-modified mesoporous carbon FDU-15 as new nanofiller for the preparation of nanocomposite materials based on nylon-6. Colloid Polym Sci 293:1569–1575. doi:10.1007/s00396-015-3556-1

    Article  Google Scholar 

  15. Mallakpour S, Dinari M, Mohammadnezhad G (2015) Ultrasonic assisted organo-modification of mesoporous SBA-15 with N-trimellitylimido-l-methionine and preparation of the poly(amide-imide)/SBA nanocomposites. Prog Org Coat 78:300–306. doi:10.1016/j.porgcoat.2014.08.005

    Article  Google Scholar 

  16. Mohammadnezhad G, Dinari M, Soltani R, Bozorgmehr Z (2015) Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly(methyl methacrylate). Appl Surf Sci 346:182–188. doi:10.1016/j.apsusc.2015.04.005

    Article  Google Scholar 

  17. Jiao J, Wang L, Wu G, Lv P, Cui Y (2015) Effects of framework structure and coupling modification on the properties of mesoporous silica/poly(methyl methacrylate) composites. J Reinf Plast Compos 34:222–231. doi:10.1177/0731684414567014

    Article  Google Scholar 

  18. Garcia N, Corrales T, Guzman J, Tiemblo P (2007) Understanding the role of nanosilica particle surfaces in the thermal degradation of nanosilica-poly(methyl methacrylate) solution-blended nanocomposites: from low to high silica concentration. Polym Degrad Stab 92:635–643. doi:10.1016/j.polymdegradstab.2007.01.006

    Article  Google Scholar 

  19. Katsikis N, Zahradnik F, Helmschrott A, Munstedt H, Vital A (2007) Thermal stability of poly(methyl methacrylate)/silica nano- and microcomposites as investigated by dynamic-mechanical experiments. Polym Degrad Stab 92:1966–1976. doi:10.1016/j.polymdegradstab.2007.08.009

    Article  Google Scholar 

  20. Kashiwagi T, Morgan AB, Antonucci JM, Vanlandingham MR, Harris RH Jr, Awad WH, Shields JR (2003) Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite. J Appl Polym Sci 89:2072–2078. doi:10.1002/app.12307

    Article  Google Scholar 

  21. Hu YH, Chen CY, Wang CC (2004) Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites. Polym Degrad Stab 84:545–553. doi:10.1016/j.polymdegradstab.2004.02.001

    Article  Google Scholar 

  22. Fu HP, Hong RY, Zhang YJ, Li HZ, Xu B, Zheng Y, Wei DG (2009) Preparation and properties investigation of PMMA/silica composites derived from silicic acid. Polym Adv Technol 20:84–91. doi:10.1002/pat.1226

    Article  Google Scholar 

  23. Saladino ML, Motaung TE, Luyt AS, Spinella A, Nasillo G, Caponetti E (2012) The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of PMMA. Polym Degrad Stab 97:452–459. doi:10.1016/j.polymdegradstab.2011.11.006

    Article  Google Scholar 

  24. Wang L, Han X, Li J, Zheng D (2012) Preparation of modified mesoporous MCM-41 silica spheres and its application in pervaporation. Powder Technol 231:63–69. doi:10.1016/j.powtec.2012.07.044

    Article  Google Scholar 

  25. Araujo JA, Cruz FT, Cruz IH, Cardoso D (2013) Encapsulation of polymers in CTA-MCM-41 via microemulsion. Microporous Mesoporous Mater 180:14–21. doi:10.1016/j.micromeso.2013.05.010

    Article  Google Scholar 

  26. Young RJ, Lovell PA (2011) Introduction to polymers, 3rd edn. CRC Press, Boca Raton. ISBN 978-0-8493-3929-5

    Google Scholar 

  27. Mendonza AM, Warzywoda J, Sacco A Jr (2006) Investigation of structural order and morphology of MCM-41 mesoporous silica using an experimental design methodology. J Porous Mater 13:37–47. doi:10.1007/s10934-006-5488-0

    Article  Google Scholar 

  28. Horcajada P, Ramila A, Perez-Pariente J, Vallet-Regi M (2004) Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater 68:105–109. doi:10.1016/j.micromeso.2003.12.012

    Article  Google Scholar 

  29. Hui KS, Chao CYH (2006) Synthesis of MCM-41 from coal fly ash by a green approach: influence of synthesis pH. J Hazard Mater B137:1135–1148. doi:10.1016/j.jhazmat.2006.03.050

    Article  Google Scholar 

  30. Gnanou Y, Fontanille M (2008) Organic and physical chemistry of polymers. Wiley, New Jersey

    Book  Google Scholar 

  31. Li X, McKenna GB, Miquelard-Garnier G, Guinault A, Sollogoub C, Regnier G, Rozanski A (2013) Forced assembly by multilayer coextrusion to create oriented graphene reinforced polymer nanocomposites. Polymer 55:248–257. doi:10.1016/j.polymer.2013.11.025

    Article  Google Scholar 

  32. Ibbett RN (1993) NMR spectroscopy of polymers. Blackie Academic & Professional, London. ISBN 0-7514-0005-X

    Book  Google Scholar 

  33. Hatada K, Kitayama T (2004) NMR spectroscopy of polymers. Springer, New York. ISBN 3-540-40220-9

    Book  Google Scholar 

  34. Avolio R, Gentile G, Avella M, Capitani D, Errico ME (2010) Synthesis and characterization of poly(methylmethacrylate)/silica nanocomposites: study of the interphase by solid-state NMR and structure/properties relationships. J Polym Sci Part A 48:5618–5629. doi:10.1002/pola.24377

    Article  Google Scholar 

  35. Zanotto A, Spinella A, Nasillo G, Caponetti E, Luyt AS (2012) Macro-micro relationship in nanostructured functional composites. Express Polym Lett 6:410–416. doi:10.3144/expresspolymlett.2012.43

    Article  Google Scholar 

  36. Zhang B, Blum FD (2003) Thermogravimetric study of ultrathin PMMA films on silica: effect of tacticity. Thermochim Acta 396:211–217. doi:10.1016/S0040-6031(02)00515-X

    Article  Google Scholar 

  37. Rittigstein P, Torkelson JM (2006) Polymer-nanoparticles interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J Polym Sci Part B 44:2935–2943. doi:10.1002/polb.20925

    Article  Google Scholar 

  38. Wang N, Gao N, Jiang S, Fang Q, Chen E (2011) Effect of different structure MCM-41 fillers with PP-g-MA on mechanical and crystallization performances of polypropylene. Compos B 42:1571–1577. doi:10.1016/j.compositesb.2011.04.012

    Article  Google Scholar 

  39. Menczel JD, Prime RB (2009) Thermal analysis of polymers: fundamentals and applications. Wiley, New Jersey. ISBN 978-0-471-76917-0

    Book  Google Scholar 

  40. Pothan LA, Oommen Z, Thomas S (2003) Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos Sci Technol 63:283–293. doi:10.1016/S0266-3538(02)00254-3

    Article  Google Scholar 

  41. Romanzini D, Lavoratti A, Ornaghi HL Jr, Amico SC, Zattera AJ (2013) Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites. Mater Des 47:9–15. doi:10.1016/j.matdes.2012.12.029

    Article  Google Scholar 

  42. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Marcel Dekker Inc, New York. ISBN 0-8247-8964-4

    Google Scholar 

  43. Wang N, Mi L, Wu Y, Wang X, Fang Q (2013) Enhanced flame retardancy of natural rubber composite with addition of microencapsulated ammonium polyphosphate and MCM-41 fillers. Fire Saf J 62:281–288. doi:10.1016/j.firesaf.2013.09.008

    Article  Google Scholar 

  44. Huang HX, Zhang JJ (2009) Effects of filler–filler and polymer–filler interactions on rheological and mechanical properties of HDPE-wood composites. J Appl Polym Sci 111:2806–2812. doi:10.1002/app.29336

    Article  Google Scholar 

  45. Majoni S, Su S, Hossenlopp J (2010) The effect of boron-containing layered hydroxyl salt (LHS) on the thermal stability and degradation kinetics of poly(methy methacrylate). Polym Degrad Stab 95:1593–1604. doi:10.1016/j.polymdegradstab.2010.05.033

    Article  Google Scholar 

  46. Cao C, Tan Z, Sun S, Liu Z, Zhang H (2011) Enhancing the thermal stability of poly(methyl methacrylate) by removing the chains with weak links in a continuous polymerization. Polym Degrad Stab 96:2209–2214. doi:10.1016/j.polymdegradstab.2011.09.005

    Article  Google Scholar 

  47. Luyt AS (2015) Using thermogravimetric analysis to determine polymer thermal stability: relevance of changes in onset temperature of mass loss. Express Polym Lett 9:756. doi:10.3144/expresspolymlett.2015.70

    Article  Google Scholar 

  48. Holland BJ, Hay JN (2002) The value and limitations of non-isothermal kinetics in the study of polymer degradation. Thermochim Acta 388:253–273. doi:10.1016/S0040-6031(02)00034-5

    Article  Google Scholar 

  49. Gao Z, Kaneko T, Hou D, Nakada M (2004) Kinetics of thermal degradation of poly(methyl methacrylate) studied with the assistance of the fractional conversion at the maximum reaction rate. Polym Degrad Stab 84:399–403. doi:10.1016/j.polymdegradstab.2003.11.015

    Article  Google Scholar 

Download references

Acknowledgements

The National Research Foundation of South Africa is acknowledged for providing the bursary funding which enabled the student to do the research presented in this paper. The University of Palermo supported this research through the CORI2013 (Bando per la concessione di contribute per l’avvio e lo sviluppo di collaborazioni dell’Ateneo 2013-Azione D—prot 32827 del 2/5/2013). NMR and TEM experimental data were provided by Centro Grandi Apparecchiature-UniNetLab-Universita` di Palermo funded by P.O.R. Sicilia 2000–2006, Misura 3.15 Azione C Quota Regionale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Luyt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibeko, M.A., Saladino, M.L., Luyt, A.S. et al. Morphology and properties of poly(methyl methacrylate) (PMMA) filled with mesoporous silica (MCM-41) prepared by melt compounding. J Mater Sci 51, 3957–3970 (2016). https://doi.org/10.1007/s10853-015-9714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9714-5

Keywords

Navigation