Skip to main content

Functionalization of Carbon Nanotube

  • Reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

One-dimensional carbon nanotubes (CNTs) have outstanding mechanical properties, making them a good candidate for reinforcement application in polymer and fiber-reinforced polymer composites. Superior properties of the CNTs are exploited regularly by reinforcing these nanotubes in a polymer matrix. However, strong Van der Waals interaction energy of tube-tube contact, high electrostatic interaction between the tubes, small tube size, and large surface area of the tubes render CNT dispersion a problematic task. Therefore, to improve its dispersion and alignment in the composite, researchers have developed innovative techniques to strengthen the properties of the composite. For achieving optimum and reproducible mechanical properties in a composite, fine dispersion of CNTs, their alignment, and strong interfacial adhesion with polymer is a demand to be guaranteed. In this chapter, the principles and techniques for uniform dispersion and alignment of CNTs in the polymer and fiber-reinforced polymer composite are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi S, Carreau PJ, Derdouri A (2010) Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: rheology, conductivity and mechanical properties. Polymer 51(4):922–935

    Article  CAS  Google Scholar 

  • Ahn JH, Na M, Koo S, Chun H, Kim I, Hur JW, Lee JH, Ok JG (2019) Development of a fully automated desktop chemical vapor deposition system for programmable and controlled carbon nanotube growth. Micro Nano Syst Lett 7(1):11

    Article  Google Scholar 

  • Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin—nanotube composite. Science 265(5176):1212–1214

    Article  CAS  Google Scholar 

  • Akpan EI, Shen X, Wetzel B, Friedrich K (2019) Chapter 2: Design and synthesis of polymer nanocomposites. In: Pielichowski K, Majka TM (eds) Polymer composites with functionalized nanoparticles, micro and nano technologies. Elsevier, Amsterdam, pp 47–83

    Chapter  Google Scholar 

  • Bilalis P, Katsigiannopoulos D, Avgeropoulos A, Sakellariou G (2014) Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv 4(6):2911–2934

    Article  CAS  Google Scholar 

  • Bower C, Zhou O, Zhu W, Werder DJ, Jin S (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77(17):2767–2769

    Article  CAS  Google Scholar 

  • Carneiro Í, Viana F, Vieira MF, Valdemar Fernandes J, Simões S (2020) Characterization of Ni–CNTs nanocomposites produced by ball-milling. Metals 10(1):2–14

    Google Scholar 

  • Cassell AM, Li J, Stevens RMD, Koehne JE, Delzeit L, Ng HT, Ye Q, Han J, Meyyappan M (2004) Vertically aligned carbon nanotube heterojunctions. Appl Phys Lett 85(12):2364–2366

    Article  CAS  Google Scholar 

  • Chen XQ, Saito T, Yamada H, Matsushige K (2001) Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl Phys Lett 78(23):3714–3716

    Article  CAS  Google Scholar 

  • Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18(6):689–706

    Article  CAS  Google Scholar 

  • De S, Fulmali AO, Nuli KC, Prusty RK, Prusty BG, Ray BC (2020) Improving delamination resistance of carbon fiber reinforced polymeric composite by interface engineering using carbonaceous nanofillers through electrophoretic deposition: An assessment at different in-service temperatures. J Appl Polym Sci 2020:50208

    Google Scholar 

  • Diao P, Liu Z (2010) Vertically aligned single-walled carbon nanotubes by chemical assembly – methodology, properties, and applications. Adv Mater 22(13):1430–1449

    Article  CAS  Google Scholar 

  • Du F, Fischer JE, Winey KI (2005) Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys Rev B 72(12):121404

    Article  Google Scholar 

  • Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401):512–514

    Article  CAS  Google Scholar 

  • Frogley MD, Zhao Q, Wagner HD (2002) Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain. Phys Rev B 65(11):113413

    Article  Google Scholar 

  • Fulmali AO, Sen B, Ray BC, Prusty RK (2020) Effects of carbon nanotube/polymer interfacial bonding on the long-term creep performance of nanophased glass fiber/epoxy composites. Polym Compos 41(2):478–493

    Article  CAS  Google Scholar 

  • Garcia EJ, Wardle BL, Hart AJ, Yamamoto N (2008) Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Compos Sci Technol 68:2034

    Article  CAS  Google Scholar 

  • Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi DM, Prato M (2007) Decorating carbon nanotubes with metal or semiconductor nanoparticles. J Mater Chem 17(26):2679–2694

    Article  CAS  Google Scholar 

  • Goh GL, Agarwala S, Yeong WY (2019) Directed and on-demand alignment of carbon nanotube: a review toward 3D printing of electronics. Adv Mater Interfaces 6(4):1801318

    Article  Google Scholar 

  • Graf A, Zakharko Y, Schießl SP, Backes C, Pfohl M, Flavel BS, Zaumseil J (2016) Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon 105:593–599

    Article  CAS  Google Scholar 

  • Gupta P, Rajput M, Singla N, Kumar V, Lahiri D (2016) Electric field and current assisted alignment of CNT inside polymer matrix and its effects on electrical and mechanical properties. Polymer 89:119–127

    Article  CAS  Google Scholar 

  • Hao Y, Qunfeng Z, Fei W, Weizhong Q, Guohua L (2003) Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism. Carbon 41(14):2855–2863

    Article  Google Scholar 

  • Hayashi Y, Negishi T, Nishino S (2001) Growth of well-aligned carbon nanotubes on nickel by hot-filament-assisted dc plasma chemical vapor deposition in a CH4/H2 plasma. J Vac Sci Technol A 19(4):1796–1799

    Article  CAS  Google Scholar 

  • He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. In: Noda T (ed) BioMed Research International. Hindawi Publishing Corporation, New York, p 578290

    Google Scholar 

  • Hennrich F, Krupke R, Arnold K, Rojas Stütz JA, Lebedkin S, Koch T, Schimmel T, Kappes MM (2007) The mechanism of cavitation-induced scission of single-walled carbon nanotubes. J Phys Chem B 111(8):1932–1937

    Article  CAS  Google Scholar 

  • Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859

    Article  CAS  Google Scholar 

  • Hong S, Kim D, Lee S, Kim B-W, Theilmann P, Park S-H (2015) Enhanced thermal and mechanical properties of carbon nanotube composites through the use of functionalized CNT-reactive polymer linkages and three-roll milling. Compos A: Appl Sci Manuf 77:142–146

    Article  CAS  Google Scholar 

  • Huang YY, Terentjev EM (2010) Tailoring the electrical properties of carbon nanotube–polymer composites. Adv Funct Mater 20(23):4062–4068

    Article  CAS  Google Scholar 

  • Hwang S-H, Park Y-B, Yoon K, Bang D (2011) Smart materials and structures based on carbon nanotube composites. In: Carbon nanotubes – synthesis, characterization, applications. https://doi.org/10.5772/17374

    Chapter  Google Scholar 

  • Jangam S, Raja S, Reddy KH (2018) Effect of multiwalled carbon nanotube alignment on the tensile fatigue behavior of nanocomposites. J Compos Mater 52(17):2365–2374

    Article  CAS  Google Scholar 

  • Jiménez-Suárez A, Martín-González J, Sánchez-Romate XF, Prolongo SG (2020) Carbon nanotubes to enable autonomous and volumetric self-heating in epoxy/polycaprolactone blends. Compos Sci Technol 199:108321

    Article  Google Scholar 

  • Kim J-K, Mai Y-W (1998) Engineered interfaces in fiber reinforced composites. Elsevier, Amsterdam

    Google Scholar 

  • Kim J-K, Sham M-L, Wu J (2001) Nanoscale characterisation of interphase in silane treated glass fibre composites. Compos A: Appl Sci Manuf 32(5):607–618

    Article  Google Scholar 

  • Kim YA, Hayashi T, Fukai Y, Endo M, Yanagisawa T, Dresselhaus MS (2002) Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chem Phys Lett 355(3):279–284

    Article  CAS  Google Scholar 

  • Kong J, Cassell AM, Dai H (1998) Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 292(4):567–574

    Article  CAS  Google Scholar 

  • Korneva G, Ye H, Gogotsi Y, Halverson D, Friedman G, Bradley J-C, Kornev KG (2005) Carbon nanotubes loaded with magnetic particles. Nano Lett 5(5):879–884

    Article  CAS  Google Scholar 

  • Law JBK, Koo CK, Thong JTL (2007) Horizontally directed growth of carbon nanotubes utilizing self-generated electric field from plasma induced surface charging. Appl Phys Lett 91(24):243108

    Article  Google Scholar 

  • Lee HW, Yoon Y, Park S, Oh JH, Hong S, Liyanage LS, Wang H, Morishita S, Patil N, Park YJ, Park JJ, Spakowitz A, Galli G, Gygi F, Wong PH-S, Tok JB-H, Kim JM, Bao Z (2011) Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat Commun 2(1):541

    Article  Google Scholar 

  • Lewicki JP, Rodriguez JN, Zhu C, Worsley MA, Wu AS, Kanarska Y, Horn JD, Duoss EB, Ortega JM, Elmer W, Hensleigh R, Fellini RA, King MJ (2017) 3D-printing of meso-structurally ordered carbon fiber/polymer composites with unprecedented orthotropic physical properties. Sci Rep 7(1):43401

    Article  Google Scholar 

  • Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim J-K (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17(16):3207–3215

    Article  CAS  Google Scholar 

  • Lionetto F, Calò E, Di Benedetto F, Pisignano D, Maffezzoli A (2014) A methodology to orient carbon nanotubes in a thermosetting matrix. Compos Sci Technol 96:47–55

    Article  CAS  Google Scholar 

  • Liu X, Spencer JL, Kaiser AB, Arnold WM (2004) Electric-field oriented carbon nanotubes in different dielectric solvents. Curr Appl Phys 4(2):125–128

    Article  Google Scholar 

  • Lu SC, Lago KL, Chen RM, Green YK, Harris MLH, Tsang PJF (1996) Mechanical damage of carbon nanotubes by ultrasound. Carbon 34:814–816

    Article  CAS  Google Scholar 

  • Ma C, Zhang W, Zhu Y, Ji L, Zhang R, Koratkar N, Liang J (2008a) Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field. Carbon 46:706–710

    Article  CAS  Google Scholar 

  • Ma PC, Tang BZ, Kim J-K (2008b) Conversion of semiconducting behavior of carbon nanotubes using ball milling. Chem Phys Lett 458(1):166–169

    Article  CAS  Google Scholar 

  • Ma P-C, Siddiqui N, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A: Appl Sci Manuf 41:1345–1367

    Article  Google Scholar 

  • Ma C, Liu H-Y, Du X, Mach L, Xu F, Mai Y-W (2015) Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field. Compos Sci Technol 114:126–135

    Article  CAS  Google Scholar 

  • Miansari M, Qi A, Yeo LY, Friend JR (2015) Vibration-induced deagglomeration and shear-induced alignment of carbon nanotubes in air. Adv Funct Mater 25(7):1014–1023

    Article  CAS  Google Scholar 

  • Minea TM, Point S, Gohier A, Granier A, Godon C, Alvarez F (2005) Single chamber PVD/PECVD process for in situ control of the catalyst activity on carbon nanotubes growth. Surface Coatings Technol, PSE 2004 200(1):1101–1105

    CAS  Google Scholar 

  • Mirjavadi SS, Alipour M, Hamouda AMS, Kord S, Koppad PG, Abuzin YA, Keshavamurthy R (2018) Effect of hot extrusion and T6 heat treatment on microstructure and mechanical properties of Al-10Zn-3.5Mg-2.5Cu nanocomposite reinforced with graphene nanoplatelets. J Manuf Process 36:264–271

    Article  Google Scholar 

  • Nam TH, Goto K, Yamaguchi Y, Premalal EVA, Shimamura Y, Inoue Y, Arikawa S, Yoneyama S, Ogihara S (2016) Improving mechanical properties of high volume fraction aligned multi-walled carbon nanotube/epoxy composites by stretching and pressing. Compos Part B 85:15–23

    Article  CAS  Google Scholar 

  • Nessim GD, Acquaviva D, Seita M, O’brien KP, Thompson CV (2010) The critical role of the underlayer material and thickness in growing vertically aligned carbon nanotubes and nanofibers on metallic substrates by chemical vapor deposition. Adv Funct Mater 20(8):1306–1312

    Article  CAS  Google Scholar 

  • Ogasawara T, Moon S-Y, Inoue Y, Shimamura Y (2011) Mechanical properties of aligned multi-walled carbon nanotube/epoxy composites processed using a hot-melt prepreg method. Compos Sci Technol 71(16):1826–1833

    Article  CAS  Google Scholar 

  • Pothnis JR, Kalyanasundaram D, Gururaja S (2021) Enhancement of open hole tensile strength via alignment of carbon nanotubes infused in glass fiber – epoxy – CNT multi-scale composites. Compos A: Appl Sci Manuf 140:106155

    Article  CAS  Google Scholar 

  • Prusty RK, Rathore DK, Shukla MJ, Ray BC (2015) Flexural behaviour of CNT-filled glass/epoxy composites in an in-situ environment emphasizing temperature variation. Compos Part B 83:166–174

    Article  CAS  Google Scholar 

  • Prusty RK, Rathore DK, Ray BC (2017) Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: emphasizing interfacial microstructures. Compos A: Appl Sci Manuf 101:215–226

    Article  CAS  Google Scholar 

  • Prusty RK, Rathore DK, Ray BC (2018) Water-induced degradations in MWCNT embedded glass fiber/epoxy composites: An emphasis on aging temperature. J Appl Polym Sci 135(11):45987

    Article  Google Scholar 

  • Rathore D, Prusty R, Kumar S, Ray B (2016) Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content. Compos A: Appl Sci Manuf 84:364–376

    Article  CAS  Google Scholar 

  • Rathore DK, Prusty RK, Ray BC (2017) Mechanical, thermomechanical, and creep performance of CNT embedded epoxy at elevated temperatures: An emphasis on the role of carboxyl functionalization. J Appl Polym Sci 134(21):44851–44862

    Google Scholar 

  • Ren Z, Lan Y, Wang Y (2013) Technologies to achieve carbon nanotube alignment. In: Ren Z, Lan Y, Wang Y (eds) Aligned carbon nanotubes: physics, concepts, fabrication and devices, nanoscience and technology. Springer, Berlin/Heidelberg, pp 111–156

    Chapter  Google Scholar 

  • Rivadeneyra A, Fernández-Salmerón J, Banqueri J, López-Villanueva JA, Capitan-Vallvey LF, Palma AJ (2014) A novel electrode structure compared with interdigitated electrodes as capacitive sensor. Sensors Actuators B Chem 204:552–560

    Article  CAS  Google Scholar 

  • Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899

    Article  CAS  Google Scholar 

  • Schmid CF, Klingenberg DJ (2000) Mechanical flocculation in flowing fiber suspensions. Phys Rev Lett 84(2):290–293

    Article  CAS  Google Scholar 

  • Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, Bekyarova E, Haddon RC (2004) Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett 4(3):459–464

    Article  CAS  Google Scholar 

  • Sharma A, Tripathi B, Vijay YK (2010) Dramatic Improvement in properties of magnetically aligned CNT/polymer nanocomposites. J Membr Sci 361(1):89–95

    Article  CAS  Google Scholar 

  • Shukla MJ, Kumar DS, Rathore DK, Prusty RK, Ray BC (2016) An assessment of flexural performance of liquid nitrogen conditioned glass/epoxy composites with multiwalled carbon nanotube. J Compos Mater 50(22):3077–3088

    Article  CAS  Google Scholar 

  • Song Y, Sun Z, Xu L, Shao Z (2017) Preparation and characterization of highly aligned carbon nanotubes/polyacrylonitrile composite nanofibers. Polymers 9(1):1

    Article  CAS  Google Scholar 

  • Thostenson ET, Chou T-W (2006) Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44(14):3022–3029

    Article  CAS  Google Scholar 

  • Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  CAS  Google Scholar 

  • Ürk D, Demir E, Bulut O, Çakıroğlu D, Cebeci FÇ, Lütfi Öveçoğlu M, Cebeci H (2016) Understanding the polymer type and CNT orientation effect on the dynamic mechanical properties of high volume fraction CNT polymer nanocomposites. Compos Struct 155:255–262

    Article  Google Scholar 

  • Vigolo B, Pénicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495):1331–1334

    Article  CAS  Google Scholar 

  • Wang D, Song P, Liu C, Wu W, Fan S (2008) Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 19(7):075609

    Article  Google Scholar 

  • Warner JH, Schäffel F, Bachmatiuk A, Rümmeli MH (2013) Chapter 4: Methods for obtaining graphene. In: Warner JH, Schäffel F, Bachmatiuk A, Rümmeli MH (eds) Graphene. Elsevier, Valencia, pp 129–228

    Chapter  Google Scholar 

  • Xu Y, Cao H, Xue Y, Li B, Cai W (2018) Liquid-phase exfoliation of graphene: an overview on exfoliation media, techniques, and challenges. Nano 8(11):942

    Google Scholar 

  • Yan H, Terentjev E (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4:275–295

    Article  Google Scholar 

  • Yao H, Sui X, Zhao Z, Xu Z, Chen L, Deng H, Liu Y, Qian X (2015) Optimization of interfacial microstructure and mechanical properties of carbon fiber/epoxy composites via carbon nanotube sizing. Appl Surf Sci 347:583–590

    Article  CAS  Google Scholar 

  • Yavari M, Mansourpour Z, Shariaty-Niassar M (2019) Controlled assembly and alignment of CNTs in ferrofluid: application in tunable heat transfer. J Magn Magn Mater 479:170–178

    Article  CAS  Google Scholar 

  • Zhao H, Zhou Z, Dong H, Zhang L, Chen H, Hou L (2013) A facile method to align carbon nanotubes on polymeric membrane substrate. Sci Rep 3(1):3480

    Article  Google Scholar 

  • Zhu L, Xiu Y, Hess DW, Wong C-P (2005) Aligned carbon nanotube stacks by water-assisted selective etching. Nano Lett 5(12):2641–2645

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Prusty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fulmali, A.O., Ramamoorthy, S.K., Prusty, R.K. (2022). Functionalization of Carbon Nanotube. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-030-91346-5_63

Download citation

Publish with us

Policies and ethics