Skip to main content

Advertisement

Log in

Recent progress of synthesis and applications in polyoxometalate and nanogold hybrid materials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The role of polyoxometalates (POMs) in the synthesis and stabilization of gold nanoparticles (Au NPs) is reviewed in light of many of the recent developments. The vitality of these hybrid materials is discussed with many examples of POMs and different synthesis techniques. Also, applications of these newly emerging hybrid materials in numerous fields such as electrocatalysis, photocatalysis, biomass catalysis, oxidation of alkenes, bio-sensing, and medicinal use are highlighted. Limitations in these applications are indicated, and areas of future applications that could be explored in these vast ranging hybrid materials are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35:1195–1208

    Article  Google Scholar 

  2. Kolb U, Quaiser SA, Winter M, Reetz MT (1996) Investigation of tetraalkylammonium bromide stabilized palladium/platinum bimetallic clusters using extended X-ray absorption fine structure spectroscopy. Chem Mater 8:1889–1894

    Article  Google Scholar 

  3. Bönnemann H, Richards RM (2001) Nanoscopic metal particles—synthetic methods and potential applications. Eur J Inorg Chem 10:2455–2480

    Article  Google Scholar 

  4. Klabunde KJ (2001) Nanostructured materials in chemistry. Wiley, New York

    Google Scholar 

  5. Schmid G (2004) Nanoparticles: from theory to application. Wiley, New York

    Google Scholar 

  6. Daniel MC, Astruc D (2004) Gold Nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  7. Correa-Duarte MA, Liz-Marzán LM (2006) Carbon nanotubes as templates for one-dimensional nanoparticle assemblies. J Mater Chem 16:22–25

    Article  Google Scholar 

  8. Huang J, Tao AR, Connor S, He R, Yang P (2006) A general method for assembling single colloidal particle lines. Nano Lett 6:524–529

    Article  Google Scholar 

  9. Pastoriza-Santos I, Liz-Marzán LM (2009) N, N-Dimethylformamide as a reaction medium for metal nanoparticle synthesis. Adv Funct Mater 19:679–688

    Article  Google Scholar 

  10. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    Article  Google Scholar 

  11. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  Google Scholar 

  12. Hughes MD, Xu YJ, Jenkins P, McMom P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437:1132–1134

    Article  Google Scholar 

  13. Cano I, Chapman AM, Urakawa A, van Leeuwen PVNM (2014) Air-stable gold nanoparticles ligated by secondary phosphine oxides for the chemoselective hydrogenation of aldehydes: crucial role of the ligand. J Am Chem Soc 136:2520–2528

    Article  Google Scholar 

  14. Johnston JH, Nilsson T (2012) Nanogold and nanosilver composites with lignin-containing cellulose fibres. J Mater Sci 47:1103–1112. doi:10.1007/s10853-011-5882-0

    Article  Google Scholar 

  15. Boronat M, Corma A (2010) Oxygen activation on gold nanoparticles: separating the influence of particle size, particle shape and support interaction. Dalton Trans 39:8538–8546

    Article  Google Scholar 

  16. Deng YH, Cai Y, Sun ZK, Liu J, Liu C, Wei J, Li W, Wang Y, Zhao DY (2010) Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. J Am Chem Soc 132:8466–8473

    Article  Google Scholar 

  17. Deng X, Friend CM (2005) Selective oxidation of styrene on an oxygen-covered Au(111). J Am Chem Soc 127:17178–17179

    Article  Google Scholar 

  18. Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454:981–983

    Article  Google Scholar 

  19. Gajan D, Guillois K, Delichere P, Basset JM, Candy JP, Caps V, Coperet C, Lesage A, Emsley L (2009) Gold nanoparticles supported on passivated silica: access to an efficient aerobic epoxidation catalyst and the intrinsic oxidation activity of gold. J Am Chem Soc 131:14667–14669

    Article  Google Scholar 

  20. Alves L, Ballesteros B, Boronat M, Ramon Cabrero-Antonino J, Concepcion P, Corma A, Angel Correa-Duarte M, Mendoza E (2011) Synthesis and stabilization of subnanometric gold oxide nanoparticles on multiwalled carbon nanotubes and their catalytic activity. J Am Chem Soc 133:10251–10261

    Article  Google Scholar 

  21. Maayan G, Neumann R (2005) Direct aerobic epoxidation of alkenes catalyzed by metal nanoparticles stabilized by the H5PV2Mo10O40 polyoxometalate. Chem Commun 36:4595–4597

    Article  Google Scholar 

  22. Troupis A, Hiskia A, Papaconstantinou E (2002) Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew Chem Int Ed 41:1911–1914

    Article  Google Scholar 

  23. Sharet S, Sandars E, Wang Y, Zeiri O, Neyman A, Meshi L, Weinstock IA (2012) Orientations of polyoxometalate anions on gold nanoparticles. Dalton Trans 41:9849–9851

    Article  Google Scholar 

  24. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, Berlin

    Book  Google Scholar 

  25. Romero PG, Gallegos KC, Cantu ML, Pastor NC (2005) Hybrid nanocomposite materials for energy storage and conversion applications. J Mater Sci 40:1423–1428. doi:10.1007/s10853-005-0578-y

    Article  Google Scholar 

  26. Hill CL, Prosser-McCartha CM (1995) Homogeneous catalysis by transition metal oxygen anion clusters. Coord Chem Rev 143:407–455

    Article  Google Scholar 

  27. Pope MT, Muller A (2001) Polyoxometalate chemistry: from topology via self-assembly to applications. Springer, Dordrecht

    Google Scholar 

  28. Long DL, Tsunashima R, Cronin L (2010) Polyoxometalates: building blocks for functional nanoscale systems. Angew Chem Int Ed 49:1736–1758

    Article  Google Scholar 

  29. Seko A, Yamase T, Yamashita KJ (2009) Polyoxometalates as effective inhibitors for sialyl-and sulfotransferases. J Inorg Biochem 103:1061–1066

    Article  Google Scholar 

  30. Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2008) Hydrogenolysis of glycerol to propanediol over Ru: polyoxometalate bifunctional catalyst. Catal Lett 120:307–311

    Article  Google Scholar 

  31. Neumann R (1998) Polyoxometalate complexes in organic oxidation chemistry. Progr Inorg Chem 47:317–370

    Article  Google Scholar 

  32. Zoladek S, Rutkowska IA, Kulesza PJ (2011) Enhancement of activity of platinum towards oxidation of ethanol by supporting on titanium dioxide containing phosphomolybdate-modified gold nanoparticles. Appl Surf Sci 257:8205–8210

    Article  Google Scholar 

  33. Triantis T, Troupis A, Gkika E, Alexakos G, Boukos N, Papaconstantinou E, Hiskia A (2009) Photocatalytic synthesis of Se nanoparticles using polyoxometalates. Catal Today 144:2–6

    Article  Google Scholar 

  34. D’Souza L, Noeske M, Richards RM, Kortz U (2013) Polyoxotungstate stabilized palladium, gold, and silver nanoclusters: a study of cluster stability, catalysis, and effects of the stabilizing anions. J Colloid Interface Sci 394:157–165

    Article  Google Scholar 

  35. Charron G, Giusti A, Mazerat S, Mialane P, Gloter A, Miserque F, Keita B, Nadjo L, Filoramo A, Riviere E, Wernsdorfer W, Huc V, Bourgoin JP, Mallah T (2010) Assembly of a magnetic polyoxometalate on SWNTs. Nanoscale 2:139–144

    Article  Google Scholar 

  36. Ma Z, Liu Q, Cui ZM, Bian SW, Song WG (2008) Parallel array of Pt/polyoxometalates composite nanotubes with stepwise inside diameter control and its application in catalysis. J Phys Chem C 112:8875–8880

    Article  Google Scholar 

  37. Huang MH, Bi LH, Shen Y, Liu BF, Dong SJ (2004) Nanocomposite multilayer film of Preyssler-type polyoxometalates with fine tunable electrocatalytic activities. J Phys Chem B 112:9780–9786

    Article  Google Scholar 

  38. Sun ZX, Xu L, Guo WH, Xu BB, Liu SP, Li FY (2010) Enhanced photoelectrochemical performance of nanocomposite film fabricated by self-assembly of titanium dioxide and polyoxometalates. J Phys Chem C 114:5211–5216

    Article  Google Scholar 

  39. Li CX, O’Halloran KP, Ma HY, Shi SL (2009) Multifunctional multilayer films containing polyoxometalates and bismuth oxide nanoparticles. J Phys Chem B 113:8043–8048

    Article  Google Scholar 

  40. Kim J, Lee L, Niece BK, Wang JX, Gewirth AA (2004) Formation of ordered multilayers from polyoxometalates and silver on electrode surfaces. J Phys Chem B 108:7927–7933

    Article  Google Scholar 

  41. Lin Y, Finke RG (1994) Novel polyoxoanion- and Bu4 N + -stabilized, isolable, and redissolvable, 20-30-.ANG. Ir300-900 nanoclusters: the kinetically controlled synthesis, characterization, and mechanism of formation of organic solvent-soluble, reproducible size, and reproducible catalytic activity metal nanoclusters. J Am Chem Soc 116:8335–8373

    Article  Google Scholar 

  42. Aiken JD, Finke RG (1999) Polyoxoanion- and tetrabutylammonium-stabilized Rh(0)(n) nanoclusters: unprecedented nanocluster catalytic lifetime in solution. J Am Chem Soc 121:8803–8810

    Article  Google Scholar 

  43. Özkar S, Finke RG (2002) Nanocluster formation and stabilization fundamental studies: ranking commonly employed anionic stabilizers via the development, then application, of five comparative criteria. J Am Chem Soc 124:5796–5810

    Article  Google Scholar 

  44. Finke RG, Özkar S (2004) Molecular insights for how preferred oxoanions bind to and stabilize transition-metal nanoclusters: a tridentate, C3 symmetry, lattice size-matching binding model. Coord Chem Rev 248:135–146

    Article  Google Scholar 

  45. Mayer C, Neveu S, Cabuil V (2002) A nanoscale hybrid system based on gold nanoparticles and heteropolyanions. Angew Chem Int Ed 41:501–503

    Article  Google Scholar 

  46. Keita B, Liu T, Nadjo L (2009) Synthesis of remarkably stabilized metal nanostructures using polyoxometalates. J Mater Chem 19:19–33

    Article  Google Scholar 

  47. Hegde S, Joshi S, Mukherjee T, Kapoor S (2013) Formation of gold nanoparticles via a thiol functionalized polyoxometalate. Mater Sci Eng C 33:2332–2337

    Article  Google Scholar 

  48. Keita B, Biboum RN, Mbomekalle IM, Floquet S, Simonnet-Jegat C, Cadot E, Miserque F, Berthet P, Nadjo L (2008) One-step synthesis and stabilization of gold nanoparticles in water with the simple oxothiometalate Na2[Mo33-S)(μ-S)3(Hnta)3]. J Mater Chem 18:3196–3199

    Article  Google Scholar 

  49. Keita B, Zhang G, Dolbecq A, Mialane P, Sécheresse F, Miserque F, Nadjo L (2007) MoV − MoVImixed valence polyoxometalates for facile synthesis of stabilized metal nanoparticles: electrocatalytic oxidation of alcohols. J Phys Chem C 111:8145–8148

    Article  Google Scholar 

  50. Keita B, Mbomekalle IM, Nadjo L, Haut C (2004) Tuning the formal potentials of new VIV-substituted Dawson-type polyoxometalates for facile synthesis of metal nanoparticles. Electrochem Commun 6:978–983

    Article  Google Scholar 

  51. Keita B, Zhang G, Dolbecq A, Mialane P, Sécheresse F, Miserque F, Nadjo L (2007) Green chemistry-type one-step synthesis of silver nanostructures based on MoV–MoVI mixed-valence polyoxometalates. Chem Mater 19:5821–5823

    Article  Google Scholar 

  52. Sokolov MN, Fedin VP, Sykes AG (2003) Chalcogenide-containing metal clusters. Compr Coord Chem 3:761–824

    Google Scholar 

  53. Bao YY, Bi LH, Wu LX (2011) One-step synthesis and stabilization of gold nanoparticles and multilayer film assembly. J Solid State Chem 184:546–556

    Article  Google Scholar 

  54. Liu R, Li S, Yu X, Zhang G, Zhang S, Yao J, Keita B, Nadjo L, Zhi L (2012) Facile synthesis of Au-nanoparticle/polyoxometalate/graphene tricomponent nanohybrids: an enzyme-free electrochemical biosensor for hydrogen peroxide. Small 8:1398–1406

    Article  Google Scholar 

  55. Ayati A, Ahmadpour A, Bamoharram FF, Heravi MM, Sillanpää M (2012) Rate redox-controlled green photosynthesis of gold nanoparticles using H3 + xPMo12 − xVxO40. Gold Bull 45:145–151

    Article  Google Scholar 

  56. Xu M, Liu C, Xu Y, Li W, Wu L (2009) Incorporation of metal nanoparticles into H3PMo12O40 hybrid Langmuir-Blodgett film through in situ reduction. Colloids Surf A 333:46–52

    Article  Google Scholar 

  57. Zhang GJ, Keita B, Biboum RN, Miserque F, Berthet P, Dolbecq A, Mialane P, Catala L, Nadjo L (2009) Synthesis of various crystalline gold nanostructures in water: the polyoxometalate β-[H4PMo12O40]3− as the reducing and stabilizing agent. J Mater Chem 19:8639–8644

    Article  Google Scholar 

  58. Mitchell SG, de la Fuente JM (2012) The synergistic behavior of polyoxometalates and metal nanoparticles: from synthetic approaches to functional nanohybrid materials. J Mater Chem 22:18091–18100

    Article  Google Scholar 

  59. Alotaibi MA, Kozhevnikova EF, Kozhevnikov IV (2012) Deoxygenation of propionic acid on heteropoly acid and bifunctional metal-loaded heteropoly acid catalysts: reaction pathways and turnover rates. Appl Catal A 447–448:32–40

    Article  Google Scholar 

  60. Seemann KM, Bauer A, Kindervater J, Meyer M, Besson C, Luysberg M, Durkin P, Pyckhout-Hintzen W, Budisa N, Georgii R, Schneider CM, Kogerler P (2013) Polyoxometalate-stabilized, water dispersible Fe2Pt magnetic nanoparticles. Nanoscale 5:2511–2519

    Article  Google Scholar 

  61. Villanneau R, Roucoux A, Beaunier P, Brourief D, Proustab A (2014) Simple procedure for vacant POM-stabilized palladium (0) nanoparticles in water: structural and dispersive effects of lacunary polyoxometalates. RSC Adv 4:26491–26498

    Article  Google Scholar 

  62. Li HL, Yang Y, Wang YZ, Li W, Bi LH, Wu LX (2010) In situ fabrication of flower-like gold nanoparticles in surfactant-polyoxometalate-hybrid spherical assemblies. Chem Commun 46:3750–3752

    Article  Google Scholar 

  63. Friedrich H, Frederik PM, de With G, Sommerdijk NAJM (2010) Imaging of self-assembled structures: interpretation of TEM and Cryo-TEM images. Angew Chem Int Ed 49:7850–7858

    Article  Google Scholar 

  64. Wang Y, Neyman A, Arkhangelsky E, Gitis V, Meshi L, Weinstock IA (2009) Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle. J Am Chem Soc 131:17412–17422

    Article  Google Scholar 

  65. Geletii YV, Hill CL, Atalla RH, Weinstock IA (2006) Reduction of O2 to superoxide anion (O2−) in water by heteropolytungstate cluster-anion. J Am Chem Soc 128:17033–17042

    Article  Google Scholar 

  66. Wang Y, Zeiri O, Gitis V, Neyman A, Weinstock IA (2010) Reversible binding of an inorganic cluster-anion to the surface of a gold nanoparticle. Inorg Chim Acta 363:4416–4420

    Article  Google Scholar 

  67. Wang Y, Weinstock IA (2010) Cation mediated self-assembly of inorganic cluster anion building blocks. Dalton Trans 39:6143–6152

    Article  Google Scholar 

  68. Wang Y, Zeiri O, Sharet S, Weinstock IA (2012) Role of the alkali-metal cation size in the self-assembly of polyoxometalate-monolayer shells on gold nanoparticles. Inorg Chem 51:7436–7438

    Article  Google Scholar 

  69. Wang Y, Zeiri O, Neyman A, Stellacci F, Weinstock IA (2012) Nucleation and island growth of alkanethiolate ligand domains on gold nanoparticles. ACS Nano 6:629–640

    Article  Google Scholar 

  70. Graham CR, Ott LS, Finke RG (2009) Ranking the lacunary (Bu4N)9{H[α2-P2W17O61]} polyoxometalate’s stabilizing ability for Ir(0)n nanocluster formation and stabilization using the five-criteria method plus necessary control experiments. Langmuir 25:1327–1336

    Article  Google Scholar 

  71. Lica G, Browne K, Tong Y (2006) Interactions between Keggin-type lacunary polyoxometalates and Ag nanoparticles: a surface-enhanced raman scattering spectroscopic investigation. J Cluster Sci 17:349–359

    Article  Google Scholar 

  72. Liu T, Langston MLK, Li D, Pigga JM, Pichon C, Todea AM, Müller A (2011) Self-recognition among different polyprotic macroions during assembly processes in dilute solution. Science 331:1590–1592

    Article  Google Scholar 

  73. Aparicio-Angles X, Clotet A, Bo C, Poblet JM (2011) Towards the computational modelling of polyoxoanions on metal surfaces: IR spectrum characterisation of [SiW12O40]4− on Ag(111). Phys Chem Chem Phys 13:15143–15147

    Article  Google Scholar 

  74. Antonio MR, Nyman M, Anderson TM (2009) Direct observation of contact ion-pair formation in aqueous solution. Angew Chem Int Ed 48:6136–6140

    Article  Google Scholar 

  75. Niu C, Wu Y, Wang Z, Li Z, Li R (2009) Synthesis and shapes of gold nanoparticles by using transition metal monosubstituted heteropolyanions as photocatalysts and stabilizers. Front Chem China 4:44–47

    Article  Google Scholar 

  76. Shankar SS, Rai A, Ahmad A, Sastry M (2005) Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater 17:566–572

    Article  Google Scholar 

  77. Li SW, Yu XL, Zhang GJ, Ma Y, Yao JN, Keita B, Nadjo L, Zhao H (2011) Green chemical decoration of multiwalled carbon nanotubes with polyoxometalate-encapsulated gold nanoparticles: visible light photocatalytic activities. J Mater Chem 21:2282–2287

    Article  Google Scholar 

  78. Bamoharram FF, Ahmadpour A, Heravi MM, Ayati A, Rashidi H, Tanhaei B (2012) Recent advances in application of polyoxometalates for the synthesis of nanoparticles. Synth React Inorg Chem 42:209–230

    Article  Google Scholar 

  79. Ahmadpour A, Bamoharrem FF, Heravi MM, Rashidi H (2011) Photocatalytic synthesis of gold nanoparticles using Preyssler acid and their photocatalytic activity. Chin J Catal 32:978–982

    Article  Google Scholar 

  80. Ayati A, Ahmadpour A, Bamoharram FF, Heravi MM (2012) A green and simple route for the controlled-size synthesis of gold nanoparticles using Preyssler heteropolyacid. Synth React Inorg Me 42:1309–1314

    Article  Google Scholar 

  81. Bamoharram FF, Heravi MM, Meraji M (2009) Synthesis of silver nanoparticles in the presence of a green heteropolyacid, H14[NaP5W30O110], and their catalytic activity for photodegradation of methylene blue and methyl orange. Int J Green Nanotechnol 1:26–31

    Article  Google Scholar 

  82. Bamoharram FF (2011) Role of polyoxometalates as green compounds in recent developments of nanoscience. Synth React Inorg Me 41(8):893–922

    Article  Google Scholar 

  83. Ayati A, Ahmadpour A, Bamoharram FF, Heravi MM, Rashidi H, Tanhaei B (2011) Application of a new photocatalyst in the preparation of silver nanoparticles and investigating their photocatalytic activity. J Nanostruct Chem 2(1):15–22

    Google Scholar 

  84. Ayati A, Ahmadpoura A, Bamoharramb FF, Heravic MM, Tanhaeia B, Sillanpääb M (2012) Facile green synthesis of gold nanorods. International Congress of Chemical Engineering, Sevilla

    Google Scholar 

  85. Puddephatt RJ (1978) Compounds with gold-metal bonds. In: Clark RJH (ed) The chemistry of gold. Elsevier, Amsterdam

    Google Scholar 

  86. Singh A, Sharp PR (2005) Palladium–gold oxo complexes. Dalton Trans 12:2080–2081

    Article  Google Scholar 

  87. Cao R, Anderson TM, Piccoli PMB, Schultz AJ, Koetzle TF, Geletii YV, Slonikina E, Hedman B, Hodgson KO, Hardcastle KI, Fang X, Kirk ML, Knottenbelt S, Kogerler P, Musaev DG, Morokuma K, Takahashi M, Hill CL (2007) Terminal gold-oxo complexes. J Am Chem Soc 129:11118–11133

    Article  Google Scholar 

  88. Bagno A, Bini R (2010) NMR spectra of terminal oxo gold and platinum complexes: relativistic DFT predictions. Angew Chem 122:1101–1104

    Article  Google Scholar 

  89. Corma A, Dominguez I, Domenech A, Fornes V, Gomez-Garcia CJ, Rodenas T, Sabater MJ (2009) Enantioselective epoxidation of olefins with molecular oxygen catalyzed by gold(III): a dual pathway for oxygen transfer. J Catal 265:238–244

    Article  Google Scholar 

  90. Izarova NV, Vankova N, Heine T, Biboum RN, Keita B, Nadjo L, Kortz U (2010) Polyoxometalates made of gold: the polyoxoaurate [(Au4As4O20)-As-III-O-V](8-). Angew Chem Int Ed 49:1886–1889

    Article  Google Scholar 

  91. Tebandeke E, Coman C, Guillois K, Canning G, Ataman E, Knudsen J, Wallenberg LR, Ssekaalo H, Schnadtb J, Wendt OF (2014) Epoxidation of olefins with molecular oxygen as the oxidant using gold catalysts supported on polyoxometalates. Green Chem 16:1586–1593

    Article  Google Scholar 

  92. An D, Ye A, Deng W, Zhang Q, Wang Y (2012) Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles. Chem Eur J 18:2938–2947

    Article  Google Scholar 

  93. Biboum RN, Keita B, Franger S, Njiki CPN, Zhang G, Zhang J, Liu T, Mbomekalle I, Nadjo L (2010) Pd0@polyoxometalate nanostructures as green electrocatalysts: illustrative example of hydrogen production. Materials 3:741–754

    Article  Google Scholar 

  94. Wang Y, Weinstock IA (2012) Polyoxometalate-decorated nanoparticles. Chem Soc Rev 41:7479–7496

    Article  Google Scholar 

  95. Babakhanian A, Kaki S, Ahmadi M, Ehzari H, Pashabadi A (2014) Development of alpha-polyoxometalate-polypyrrole-Au nanoparticles modified sensor applied for detection of folic acid. Biosens Bioelectron 60:185–190

    Article  Google Scholar 

  96. Li S, Maa H, O’Halloran KP, Pang H, Hongrui J, Zhou C (2013) Enhancing characteristics of a composite film by combination of vanadium-substituted molybdophosphate and platinum nanoparticles for an electrochemical sensor. Electro Chim Acta 108:717–726

    Article  Google Scholar 

  97. Hou W, Cronin SB (2013) A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater 23:1612–1619

    Article  Google Scholar 

  98. Solarska R, Bienkowski K, Zoladek S, Majcher A, Stefaniuk T, Kulesza PJ, Augustynski J (2014) Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold–polyoxometalate particles. Angew Chem Int Ed 53:14196–14200

    Article  Google Scholar 

  99. Vazylyev M, Sloboda-Rozner D, Haimov A, Maayan G, Neumann R (2005) Strategies for oxidation catalyzed by polyoxometalates at the interface of homogeneous and heterogeneous catalysis. Top Catal 34:93–99

    Article  Google Scholar 

  100. Zhang M, Weinstock IA, Wang Y (2014) Electrocatalysis by polyoxometalate-protected gold nanoparticles. J Clust Sci 25:771–779

    Article  Google Scholar 

  101. Ernst AZ, Zoladek S, Wiaderek K, Coxb JA, Zurowskaa AK, Miecznikowski K, Kulesza PJ (2008) Network films of conducting polymer-linked polyoxometalate-modified gold nanoparticles: preparation and electrochemical characterization. Electrochimi Acta 53:3924–3931

    Article  Google Scholar 

  102. Barczuk PJ, Lewera A, Miecznikowski K, Zurowski A, Kulesza PJ (2010) Enhancement of catalytic activity of platinum-based nanoparticles towards electrooxidation of ethanol through interfacial modification with heteropolymolybdates. J Power Sour 195:2507–2513

    Article  Google Scholar 

  103. Zoladek S, Rutkowskaa IA, Skorupska K, Palys B, Kuleszaa PJ (2011) Fabrication of polyoxometallate-modified gold nanoparticles and their utilization as supports for dispersed platinum in electrocatalysis. Electrochim Acta 56:10744–10750

    Article  Google Scholar 

  104. Weinberg HS, Delcomyn CA, Unnan V (2003) Bromate in chlorinated drinking waters: occurrence and implications for future regulation. Environ Sci Technol 37:3104–3110

    Article  Google Scholar 

  105. Ernst AZ, Sun L, Wiaderek K, Kolary A, Zoladek S, Kulesza PJ, Cox JA (2007) Synthesis of polyoxometalate-protected gold nanoparticles by a ligand-exchange method: application to the electrocatalytic reduction of bromate. Electroanal 19:2103–2109

    Article  Google Scholar 

  106. Karnicka K, Chojak M, Miecznikowski K, Skunik M, Baranowska B, Kolary A, Piranska A, Palys B, Adamczyk L, Kulesza PJ (2005) Polyoxometalates as inorganic templates for electrocatalytic network films of ultra-thin conducting polymers and platinum nanoparticles. Bioelectrochem 66:79–87

    Article  Google Scholar 

  107. Turyan I, Mandler D (1998) Two-dimensional polyaniline thin film electrodeposited on a self-assembled monolayer. J Am Chem Soc 120:10733–10742

    Article  Google Scholar 

  108. Miyazaki A, Nakano Y (2000) Morphology of platinum nanoparticles protected by poly(N-isopropylacrylamide). Langmuir 16:7109–7111

    Article  Google Scholar 

  109. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1925

    Article  Google Scholar 

  110. Wiaderek KM, Cox JA (2011) Preparation and electrocatalytic application of composites containing gold nanoparticles protected with rhodium-substituted polyoxometalates. Electrochimi Acta 56:3537–3542

    Article  Google Scholar 

  111. Kriz K, Anderlund M, Kriz D (2001) Real-time detection of l-ascorbic acid and hydrogen peroxide in crude food samples employing a reversed sequential differential measuring technique of the SIRE-technology based biosensor. Biosens Bioelectron 16:363–369

    Article  Google Scholar 

  112. Baskar S, Chang JL, Zen JM (2012) Simultaneous detection of NADH and H2O2 using flow injection analysis based on a bifunctional poly(thionine)-modified electrode. Biosens Bioelectron 33:95–99

    Article  Google Scholar 

  113. Teymourian H, Salimi A, Hallaj R (2012) Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: fabrication of integrated dehydrogenase-based lactate biosensor. Biosens Bioelectron 33:60–68

    Article  Google Scholar 

  114. Won YH, Aboagye D, Jang HS, Jitianu A, Stanciu LA (2010) Core/shell nanoparticles as hybrid platforms for the fabrication of a hydrogen peroxide biosensor. J Mater Chem 20:5030–5034

    Article  Google Scholar 

  115. Lin KC, Tsai TH, Chen SM (2010) Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT–PEDOT film. Biosens Bioelectron 26:608–614

    Article  Google Scholar 

  116. Claussen JC, Franklin AD, Haque AU, Porterfield DM, Fisher TS (2009) Electrochemical biosensor of nanocube-augmented carbon nanotube networks. ACS Nano 3:37–44

    Article  Google Scholar 

  117. Zhang Y, Bo X, Nsabimana A, Munyentwali A, Han C, Li M, Guo L (2015) Green and facile synthesis of an Au nanoparticles@polyoxometalate/ordered mesoporous carbon tri-component nanocomposite and its electrochemical applications. Biosens Bioelectron 66:191–197

    Article  Google Scholar 

  118. Li S, Yu X, Zhang G, Ma Y, Yao J, de Oliveira P (2011) Green synthesis of a Pt nanoparticle/polyoxometalate/carbon nanotube tri-component hybrid and its activity in the electrocatalysis of methanol oxidation. Carbon 49:1906–1911

    Article  Google Scholar 

  119. Wang Y, Zhang S, Du D, Shao YY, Li ZH, Wang J, Engelhard MH, Li JH, Lin YH (2011) Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. J Mater Chem 21:5319–5325

    Article  Google Scholar 

  120. Yang MH, Choi BG, Park H, Park TJ, Hong WH, Lee SY (2011) Directed self-assembly of gold nanoparticles on graphene-ionic liquid hybrid for enhancing electrocatalytic activity. Electroanal 23:850–857

    Article  Google Scholar 

  121. Liu RJ, Li SW, Yu XL, Zhang GJ, Ma Y, Yao JN, Keita B, Nadjo L (2011) Polyoxometalate-assisted galvanic replacement synthesis of silver hierarchical dendritic structures. Cryst Growth Des 11:3424–3431

    Article  Google Scholar 

  122. Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Polyoxometalates in medicine. Chem Rev 98:327–357

    Article  Google Scholar 

  123. Yamase T (2005) Anti-tumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug. J Mater Chem 15:4773–4782

    Article  Google Scholar 

  124. Hasenknopf B (2005) Polyoxometalates: introduction to a class of inorganic compounds and their biomedical applications. Front Biosci 10:275–287

    Article  Google Scholar 

  125. Daima HK, Selvakannan PR, Shukla R, Bhargava SK, Bansal V (2013) Fine-tuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine. PLoS One 8:1–14

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Zhejiang Province Natural Science Foundation (Y4080247), Natural Science Foundation of China (21376213), and Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (K002). We thank Professor Wayne Tikkanen from California State University and Professor Zhan Lin from Zhejiang University to make great contributions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqiao Zhu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jameel, U., Zhu, M., Chen, X. et al. Recent progress of synthesis and applications in polyoxometalate and nanogold hybrid materials. J Mater Sci 51, 2181–2198 (2016). https://doi.org/10.1007/s10853-015-9503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9503-1

Keywords

Navigation