Skip to main content
Log in

A review of phase equilibria in Heusler alloy systems containing Fe, Co or Ni

  • 50th Anniversary
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The phase equilibria associated with Heusler-type intermetallic compounds have been reviewed for systems containing Fe, Co or Ni. Ternary alloy systems are identified in which the phase equilibria are not well established or completely unknown and which are therefore prime targets for additional experimental work. Other systems in which there is conflicting information regarding the existence of a Heusler phase are also identified. Design issues are highlighted in terms of phase combinations that may benefit functional properties or processing of bulk material containing Heusler compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Heusler F (1903) On magnetic manganese alloys. Verhandl Deuts Phys Ges 5:219

    Google Scholar 

  2. Graf T, Felser C, Parkin SSP (2011) Simple rules for the understanding of Heusler compounds. Prog Solid State Chem 39:1–50. doi:10.1016/j.progsolidstchem.2011.02.001

    Article  Google Scholar 

  3. Siewert M, Gruner ME, Dannenberg A, Chakrabarti A, Herper HC, Wuttig M, Barman SR, Singh S, Al-Zubi A, Hickel T, Neugebauer J, Gillessen M, Dronskowski R, Entel P (2011) Designing shape-memory Heusler alloys from first-principles. Appl Phys Lett 99:191904. doi:10.1063/1.3655905

    Article  Google Scholar 

  4. Galanakis I, Mavropoulos P, Dederichs PH (2005) Introduction to half-metallic Heusler alloys: electronic structure and magnetic properties. J Phys D, Appl Phys 39:765–775. doi:10.1088/0022-3727/39/5/S01

    Article  Google Scholar 

  5. Balke B, Wurmehl S, Fecher GH (2008) Rational design of new materials for spintronics: Co2FeZ (Z = Al, Ga, Si, Ge). Sci Technol Adv Mater. doi:10.1063/1.4821125

    Google Scholar 

  6. Kimura T, Hashimoto N, Yamada S, Miyao M, Hamaya K (2012) Room-temperature generation of giant pure spin currents using epitaxial Co2FeSi spin injectors. NPG Asia Mater 4:e9

    Article  Google Scholar 

  7. Kimura Y, Chai Y-W (2015) Ordered structures and thermoelectric properties of MNiSn (M = Ti, Zr, Hf)-based half-Heusler compounds affected by close relationship with Heusler compounds. JOM 67:233–245. doi:10.1007/s11837-014-1233-3

    Article  Google Scholar 

  8. Nakatani T, Gercsi Z, Rajanikanth A, Takahashi Y, Hono K (2008) The effect of iron addition on the spin polarization and magnetic properties of Co2CrGa Heusler alloy. J Phys Appl Phys 41:225002

    Article  Google Scholar 

  9. Yin M, Chen S, Nash P (2013) Enthalpies of formation of selected Co2YZ Heusler compounds. J Alloys Compd 577:49–56. doi:10.1016/j.jallcom.2013.04.136

    Article  Google Scholar 

  10. Yin M, Nash P, Chen S, Du Y (2015) Enthalpies of formation of selected Fe2YZ Heusler compounds. Intermetallics 57:34–40. doi:10.1016/j.intermet.2014.10.001

    Article  Google Scholar 

  11. TPTC Thermodynamics Database. https://tptc.iit.edu/index.php/thermodynamics. Accessed 17 June 2015

  12. Zhang L, Wang J, Du Y, Hu R, Nash P, Lu X-G, Jiang C (2009) Thermodynamic properties of the Al–Fe–Ni system acquired via a hybrid approach combining calorimetry, first-principles and CALPHAD. Acta Mater 57:5324–5341

    Article  Google Scholar 

  13. Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C (2013) Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65:1501–1509. doi:10.1007/s11837-013-0755-4

    Article  Google Scholar 

  14. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002–011012. doi:10.1063/1.4812323

    Article  Google Scholar 

  15. Aflow—Automatic—FLOW for materials discovery. http://www.aflowlib.org/. Accessed 31 May 2015

  16. Calderon CE, Plata JJ, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl MJ, Hart G, Nardelli MB (2015) The AFLOW standard for high-throughput materials science calculations. ArXiv Prepr. http://arxiv.org/ArXiv150600303

  17. Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor RH, Nelson LJ, Hart GL, Sanvito S, Buongiorno-Nardelli M (2012) AFLOWLIB. ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci 58:227–235

    Article  Google Scholar 

  18. Curtarolo S, Setyawan W, Hart GL, Jahnatek M, Chepulskii RV, Taylor RH, Wang S, Xue J, Yang K, Levy O (2012) AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater Sci 58:218–226

    Article  Google Scholar 

  19. Helmholdt RB, Buschow KHJ (1987) Crystallographic and magnetic structure of Ni2MnSn and NiMn2Sn. J Common Met 128:167–171. doi:10.1016/0022-5088(87)90202-5

    Article  Google Scholar 

  20. Nazmunnahar M, Ryba T, del Val JJ, Ipatov M, González J, Hašková V, Szabó P, Samuely P, Kravcak J, Vargova Z, Varga R (2015) Half-metallic Ni2MnSn Heusler alloy prepared by rapid quenching. J Magn Magn Mater 386:98–101. doi:10.1016/j.jmmm.2015.03.066

    Article  Google Scholar 

  21. Dan NH, Duc NH, Yen NH, Thanh PT, Bau LV, An NM, Anh DTK, Bang NA, Mai NT, Anh PK, Thanh TD, Phan TL, Yu SC (2015) Magnetic properties and magnetocaloric effect in Ni–Mn–Sn alloys. J Magn Magn Mater 374:372–375. doi:10.1016/j.jmmm.2014.08.061

    Article  Google Scholar 

  22. Marcinkowski MJ, Fisher RM (1963) Theoretical analysis of plastic deformation in superlattices based on the body-centered cubic structure. J Appl Phys 34:2135. doi:10.1063/1.1702703

    Article  Google Scholar 

  23. Kawaharada Y, Kurosaki K, Yamanaka S (2003) High temperature thermoelectric properties of (Fe1−x V x )3 Al Heusler type compounds. J Alloys Compd 349:37–40

    Article  Google Scholar 

  24. Takeuchi T, Terazawa Y, Furuta Y, Yamamoto A, Mikami M (2013) Effect of heavy element substitution and off-stoichiometric composition on thermoelectric properties of Fe2VAl-based Heusler phase. J Electron Mater 42:2084–2090

    Article  Google Scholar 

  25. Skoug EJ, Zhou C, Pei Y, Morelli DT (2009) High thermoelectric power factor near room temperature in full-Heusler alloys. J Electron Mater 38:1221–1223. doi:10.1007/s11664-008-0626-x

    Article  Google Scholar 

  26. Mikami M, Ozaki K, Takazawa H, Yamamoto A, Terazawa Y, Takeuchi T (2013) Effect of Ti substitution on thermoelectric properties of W-doped Heusler Fe2VAl alloy. J Electron Mater 42:1801–1806. doi:10.1007/s11664-012-2433-7

    Article  Google Scholar 

  27. Felser C, Wollmann L, Chadov S, Fecher GH, Parkin SSP (2015) Basics and prospective of magnetic Heusler compounds. APL Mater 3:041518–041519. doi:10.1063/1.4917387

    Article  Google Scholar 

  28. Graf T, Parkin SS, Feiser C (2011) Heusler compounds—a material class with exceptional properties. IEEE Trans Magn 47:367–373

    Article  Google Scholar 

  29. Felser C, Fecher GH, Balke B (2007) Spintronics: a challenge for materials science and solid-state chemistry. Angew Chem Int Ed 46:668–699. doi:10.1002/anie.200601815

    Article  Google Scholar 

  30. Planes A, Mañosa L, Acet M (2009) Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J Phys: Condens Matter 21:233201–233229. doi:10.1088/0953-8984/21/23/233201

    Google Scholar 

  31. Wang C, Meyer J, Teichert N, Auge A, Rausch E, Balke B, Hütten A, Fecher GH, Felser C (2014) Heusler nanoparticles for spintronics and ferromagnetic shape memory alloys. J Vac Sci Technol B Microelectron Nanometer Struct 32:020802–020814. doi:10.1116/1.4866418

    Google Scholar 

  32. Buschow KHJ, van Engen PG, Jongebreur R (1983) Magneto-optical properties of metallic ferromagnetic materials. J Magn Magn Mater 38:1–22. doi:10.1016/0304-8853(83)90097-5

  33. Lisenko LA, Ban Z, Gladyshevskii EI (1971) Investigation of the system Zr-Fe-Si. Croat Chem Acta 43:113–118

    Google Scholar 

  34. Miyawaki T, Foerster M, Finizio S, Vaz CAF, Mawass MA, Inagaki K, Fukatani N, Le Guyader L, Nolting F, Ueda K, Asano H, Kläui M (2013) The effect of magnetocrystalline anisotropy on the domain structure of patterned Fe2CrSi Heusler alloy thin films. J Appl Phys 114:073905. doi:10.1063/1.4818800

    Article  Google Scholar 

  35. Suzuki RO, Kyono T (2004) Thermoelectric properties of Fe2TiAl Heusler alloys. J Alloys Compd 377:38–42. doi:10.1016/j.jallcom.2004.01.035

    Article  Google Scholar 

  36. Palm M, Inden G, Thomas N (1995) The Fe-A1-Ti system. J Phase Equilibria 16:209–222

    Article  Google Scholar 

  37. Markiv VY, Burnasheva VV, Ryabov VR (1973) Investigation of the systems Ti-Fe-Al, Ti-Ni-Al and Ti-Cu-Al. Metallofiz Akad Nauk Ukr SSR Inst Metallofiz 46:103–109

    Google Scholar 

  38. Ghosh G (1992) Aluminium-iron-titanium. Ternary alloys. VCH Verlagsgesellschaft Weinh Ger 5:456–469

    Google Scholar 

  39. Markiv VY, Hladyshevsky EI, Kzuma YB (1962) New ternary compounds with a structure of the MnCu2Al type. Dop Akad Nauk Ukrain RSR 1329–1331

  40. Niculescu V, Budnick JI (1977) Limits of solubility, magnetic properties and electron concentration in Fe3−xTxSi system. Solid State Commun 24:631–634. doi:10.1016/0038-1098(77)90378-7

    Article  Google Scholar 

  41. Niculescu V, Burch TJ, Raj K, Budnick JI (1977) Properties of Heusler-type materials Fe2TSi and FeCo2Si. J Magn Magn Mater 5:60–66

    Article  Google Scholar 

  42. Krez J, Balke B, Felser C, Hermes W, Schwind M (2015) Long-term stability of phase-separated half-Heusler compounds. ArXiv Prepr. http://arxiv.org/ArXiv150201828

  43. Kuentzler R, Clad R, Schmerber G, Dossmann Y (1992) Gap at the Fermi level and magnetism in RMSn ternary compounds (R = Ti, Zr, Hf and M = Fe Co, Ni). J Magn Magn Mater 104–107:1976–1978. doi:10.1016/0304-8853(92)91629-8

    Article  Google Scholar 

  44. Mikami M, Matsumoto A, Kobayashi K (2008) Synthesis and thermoelectric properties of microstructural Heusler Fe2VAl alloy. J Alloys Compd 461:423–426. doi:10.1016/j.jallcom.2007.07.004

    Article  Google Scholar 

  45. Mikami M, Kobayashi K, Kawada T, Kubo K, Uchiyama N (2009) Development of a thermoelectric module using the Heusler alloy Fe2VAl. J Electron Mater 38:1121–1126. doi:10.1007/s11664-009-0724-4

    Article  Google Scholar 

  46. Mikami M, Mizoshiri M, Ozaki K, Takazawa H, Yamamoto A, Terazawa Y, Takeuchi T (2014) Evaluation of the thermoelectric module consisting of W-doped Heusler Fe2VAl alloy. J Electron Mater 43:1922–1926

    Article  Google Scholar 

  47. Maebashi T, Kozakai T (2004) Doi M Phase equilibria in iron-rich Fe–Al–V ternary alloy system. Z Für Met 95:1005–1010. doi:10.3139/146.018048

    Article  Google Scholar 

  48. Raghavan V (1992) The Fe-Ga-V (iron-gallium-vanadium) system. Phase Diagr Ternary Iron Alloys Indian Inst Met Calcutta India 6B:856–859

    Google Scholar 

  49. Fujii S, Ishida S, Asano S (1994) Electronic and magnetic properties of X2Mn1−x V x Si (X = Fe and Co). J Phys Soc Jpn 63:1881–1888. doi:10.1143/JPSJ.63.1881

    Article  Google Scholar 

  50. Wurmehl S, Fecher GH, Felser C (2006) Co2CrIn: a further magnetic Heusler compound. Z Naturforsch 61:749–752

    Article  Google Scholar 

  51. Dai X, Liu G, Li Y, Qu J, Li J, Chen J, Wu G (2007) Structure and magnetic properties of highly ordered Co2NiGa alloys. J Appl Phys 101:09N503. doi:10.1063/1.2709417

    Google Scholar 

  52. Markiv VY, Storozhenko AI (1974) Phase equilibria in the Zr-Fe-Ga and Zr-Co-Ga systems. Dopovidi Akad Nauk Ukr RSR Seriya Fiz-Tekhnichni Ta Mat Nauki 10:945–949

    Google Scholar 

  53. Belyavina NN, Markiv VY (1978) The Hf-Co-Ga system. Dopov Akad Nauk A 4:362–365

  54. Markiv VY, Storozhenko AI, Zozulya AA (1974) Investigation of Ti-Fe-Ga and Ti-Co-Ga systems. Dopovidi Akad Nauk Ukr RSR Seriya Fiz-Tekhnichni Ta Mat Nauki 36:759–762

    Google Scholar 

  55. Ducher R, Kainuma R, Ohnuma I, Ishida K (2007) Phase equilibria and stability of B2 and L21 ordered phases in the Co–Fe–Ga Heusler alloy system. J Alloys Compd 437:93–101. doi:10.1016/j.jallcom.2006.07.091

    Article  Google Scholar 

  56. Kobayashi K, Kainuma R, Fukamichi K, Ishida K (2005) Phase equilibria and stability of B2 and L21 ordered phases in the vicinity of half-metallic composition of Co–Cr–Ga Heusler alloy system. J Alloys Compd 403:161–167. doi:10.1016/j.jallcom.2005.05.009

    Article  Google Scholar 

  57. Minakuchi K, Umetsu RY, Kobayashi K, Nagasako M, Kainuma R (2015) Phase equilibria and magnetic properties of Heusler-type ordered phases in the Co-Mn-Ga ternary system. J Alloys Compd 645:577–585. doi:10.1016/j.jallcom.2015.04.200

    Article  Google Scholar 

  58. Ishikawa K, Kainuma R, Ohnuma I, Aoki K, Ishida K (2002) Phase stability of the X2AlTi (X: Fe Co, Ni and Cu) Heusler and B2-type intermetallic compounds. Acta Mater 50:2233–2243. doi:10.1016/S1359-6454(01)00434-7

    Article  Google Scholar 

  59. Kim TW, Gambino RJ (1997) Temperature dependence of coercivity of the two-phase Co/Co2TiSn magnet. J Appl Phys 81:5184–5186

    Article  Google Scholar 

  60. Stadnyk Y, Romaka L, Horyn A, Tkachuk A, Gorelenko Y, Rogl P (2005) Isothermal sections of the Ti–Co–Sn and Ti–Co–Sb systems. J Alloys Compd 387:251–255

    Article  Google Scholar 

  61. Skolozdra RV, Stadnyk YV, Gorelenko Y, Terletska EE (1990) Influence of vacancies on the magnetic and electrical properties of Heusler phases Me′Co2−xSn(Me′ = Ti, Zr, Hf). Phys Tverd Tela 32:1536–1538

    Google Scholar 

  62. Barth J, Fecher GH, Balke B, Graf T, Shkabko A, Weidenkaff A, Klaer P, Kallmayer M, Elmers H-J, Yoshikawa H (2011) Anomalous transport properties of the half-metallic ferromagnets Co2TiSi, Co2TiGe and Co2TiSn. Philos Trans R Soc Lond Math Phys Eng Sci 369:3588–3601

    Article  Google Scholar 

  63. Meinert M, Schmalhorst J, Wulfmeier H, Reiss G, Arenholz E, Graf T, Felser C (2011) Electronic structure of fully epitaxial Co2TiSn thin films. Phys Rev B 83:064412

    Article  Google Scholar 

  64. Lee SC, Lee TD, Blaha P, Schwarz K (2005) Magnetic and half-metallic properties of the full-Heusler alloys Co2TiX (X = Al, Ga; Si, Ge, Sn; Sb). J Appl Phys 97:10C307

    Google Scholar 

  65. Webster PJ, Ziebeck KRA (1973) Magnetic and chemical order in Heusler alloys containing cobalt and titanium. J Phys Chem Solids 34:1647–1654

    Article  Google Scholar 

  66. Ma Y, Heijl R, Palmqvist AE (2013) Composite thermoelectric materials with embedded nanoparticles. J Mater Sci 48:2767–2778. doi:10.1007/s10853-012-6976-z

    Article  Google Scholar 

  67. Yin F, Tédenac J-C, Gascoigne F (2007) Thermodynamic modelling of the Ti–Sn system and calculation of the Co–Ti–Sn system. CALPHAD Comput Coupling Phase Diagr Thermochem 31:370–379

    Article  Google Scholar 

  68. Kamiya N, Sakai T, Kainuma R, Ohnuma I, Ishida K (2004) Phase separation of BCC phase in the Co-rich portion of Co-Fe-Al system. Intermetallics 12:417–423

    Article  Google Scholar 

  69. Kogachi M, Tadachi N, Nakanishi T (2006) Structural properties and magnetic behavior in Co–Fe–Al alloys. Intermetallics 14:742–749. doi:10.1016/j.intermet.2005.11.006

    Article  Google Scholar 

  70. Balke B, Wurmehl S, Fecher GH, Felser C, Alves MCM, Bernardi F, Morais J (2007) Structural characterization of the Co2FeZ (Z = Al, Si, Ga, and Ge) Heusler compounds by X-ray diffraction and extended X-ray absorption fine structure spectroscopy. Appl Phys Lett 90:172501–172504. doi:10.1063/1.2731314

    Article  Google Scholar 

  71. Shreder EI, Svyazhin AD, Belozerova KA (2013) Optical properties of Heusler alloys Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa. Phys Met Metallogr 114:904–909. doi:10.1134/S0031918X13110124

    Article  Google Scholar 

  72. Colinet C, Inden G, Kikuchi R (1993) CVM calculation of the phase diagram of bcc Fe–Co–Al. Acta Metall Mater 41:1109–1118

    Article  Google Scholar 

  73. Watson A, MSIT (2004) MSI Eureka Evaluation Report 10.15955.2.8 System Name: Al–Co–Fe. MSIT® Registered. Trademark MSI, Materials Science International Services GmbH

  74. Kozakai T, Miyazaki T (1994) Experimental and theoretical studies on phase separations in the Fe–Al–Co ordering alloy system. J Mater Sci 29:652–659. doi:10.1007/BF00445974

    Article  Google Scholar 

  75. Kozakai T, Okamoto R, Miyazaki T (1999) Phase equilibria in the Fe-Al-Co ternary system at 923 K. Z Für Met 90:261–266

    Google Scholar 

  76. Takamura Y, Nakane R, Sugahara S (2009) Analysis of L21-ordering in full-Heusler Co2FeSi alloy thin films formed by rapid thermal annealing. J Appl Phys 105:07B109. doi:10.1063/1.3075989

    Article  Google Scholar 

  77. Yamada S, Hamaya K, Yamamoto K, Murakami T, Mibu K, Miyao M (2010) Significant growth-temperature dependence of ferromagnetic properties for Co2FeSi/Si(111) prepared by low-temperature molecular beam epitaxy. Appl Phys Lett 96:082511. doi:10.1063/1.3330895

    Article  Google Scholar 

  78. Blum CGF, Jenkins CA, Barth J, Felser C, Wurmehl S, Friemel G, Hess C, Behr G, Büchner B, Reller A, Riegg S, Ebbinghaus SG, Ellis T, Jacobs PJ, Kohlhepp JT, Swagten HJM (2009) Highly ordered, half-metallic Co2FeSi single crystals. Appl Phys Lett 95:161903–161904. doi:10.1063/1.3242370

    Article  Google Scholar 

  79. Kasahara K, Yamamoto K, Yamada S, Murakami T, Hamaya K, Mibu K, Miyao M (2010) Highly ordered Co2FeSi Heusler alloys grown on Ge(111) by low-temperature molecular beam epitaxy. J Appl Phys 107:09B105. doi:10.1063/1.3350915

    Article  Google Scholar 

  80. Garg AB, Vijayakumar V (2011) Phase stability of Heusler compound Co2FeSi under pressure: an in situ X-ray diffraction investigation. J Appl Phys 110:083523. doi:10.1063/1.3656983

    Article  Google Scholar 

  81. Bombor D, Blum CGF, Volkonskiy O, Rodan S, Wurmehl S, Hess C, Büchner B (2013) Half-Metallic ferromagnetism with unexpectedly small spin splitting in the Heusler compound Co2FeSi. Phys Rev Lett 110:066601–066605. doi:10.1103/PhysRevLett.110.066601

    Article  Google Scholar 

  82. Kiss LF, Bortel G, Bujdosó L, Kaptás D, Kemény T, Vincze I (2015) Average magnetization and Fe hyperfine fields in Co2FeSi-based Heusler alloys. Acta Phys Pol A 127:347–349. doi:10.12693/APhysPolA.127.347

    Article  Google Scholar 

  83. Hashimoto M, Herfort J, Schönherr HP, Ploog KH (2005) Epitaxial Heusler alloy Co2FeSi/GaAs(001) hybrid structures. Appl Phys Lett 87:102506. doi:10.1063/1.2041836

    Article  Google Scholar 

  84. Fecher GH, Kandpal HC, Wurmehl S, Felser C, Schönhense G (2006) Slater–Pauling rule and Curie temperature of Co2-based Heusler compounds. J Appl Phys 99:08J106. doi:10.1063/1.2167629

    Article  Google Scholar 

  85. Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C, Lin H-J, Morais J (2005) Geometric, electronic, and magnetic structure of Co2FeSi: Curie temperature and magnetic moment measurements and calculations. Phys Rev B 72:184434–184439. doi:10.1103/PhysRevB.72.184434

    Article  Google Scholar 

  86. Gercsi Z, Hono K (2007) Ab initio predictions for the effect of disorder and quaternary alloying on the half-metallic properties of selected Co2Fe-based Heusler alloys. J Phys: Condens Matter 19:326216. doi:10.1088/0953-8984/19/32/326216

    Google Scholar 

  87. Mohankumar R, Ramasubramanian S, Rajagopalan M, Raja MM, Kamat SV, Kumar J (2015) Density functional study of half-metallic property on B2 disordered Co2FeSi. J Mater Sci 50:1287–1294. doi:10.1007/s10853-014-8687-0

    Article  Google Scholar 

  88. Chen X-Q, Podloucky R, Rogl P (2006) Ab initio prediction of half-metallic properties for the ferromagnetic Heusler alloys Co2MSi (M = Ti, V, Cr). J Appl Phys 100:113901

    Article  Google Scholar 

  89. Balke B, Fecher GH, Kandpal HC, Felser C, Kobayashi K, Ikenaga E, Kim J-J, Ueda S (2006) Properties of the quaternary half-metal-type Heusler alloy Co2Mn1x Fe x Si. Phys Rev B 74:104405–104410. doi:10.1103/PhysRevB.74.104405

    Article  Google Scholar 

  90. Yin M, Nash P, Chen S (2013) Heat capacities of several Co2YZ Heusler compounds. Thermochim Acta 574:79–84. doi:10.1016/j.tca.2013.10.004

    Article  Google Scholar 

  91. Raynor GV, Rivlin VG (1988) Co–Fe–Si Phase equilibria of iron ternary alloys. Institute of Metals, London, pp 256–267

    Google Scholar 

  92. Rokhlin L, MSIT® (2007) Co–Fe–Si ternary phase diagram evaluation. MSI Eureka Evaluation Report 10.10292.1.2. MSI Eureka

  93. Raghavan V (1987) The Co–Fe–Sn (cobalt–iron–tin) system. Phase diagram. Ternary iron alloys. Indian Institute of Metals, Calcutta, pp 23–30

    Google Scholar 

  94. Singh VK, Singh M, Bahn S (1985) Phase transformation studies on Fe–Co–Sn alloys. Trans Indian Inst Met 38:128–131

    Google Scholar 

  95. Zhang W, Jiko N, Mibu K, Yoshimura K (2005) Effect of substitution of Mn with Fe or Cr in Heusler alloy of Co2MnSn. J Phys: Condens Matter 17:6653–6662. doi:10.1088/0953-8984/17/42/006

    Google Scholar 

  96. Li T, Duan J, Yang C, Kou X (2013) Synthesis, microstructure and magnetic properties of Heusler Co2FeSn nanoparticles. Micro Nano Lett IET 8:143–146. doi:10.1049/mnl.2012.0905

    Article  Google Scholar 

  97. Duan J, Kou X (2013) Effect of current density on the microstructure and magnetic properties of electrodeposited Co2FeSn Heusler alloy. J Electrochem Soc 160:D471–D475. doi:10.1149/2.089310jes

    Article  Google Scholar 

  98. Tanaka MA, Ishikawa Y, Wada Y, Hori S, Murata A, Horii S, Yamanishi Y, Mibu K, Kondou K, Ono T, Kasai S (2012) Preparation of Co2FeSn Heusler alloy films and magnetoresistance of Fe/MgO/Co2FeSn magnetic tunnel junctions. J Appl Phys 111:053902–053906. doi:10.1063/1.3688324

    Article  Google Scholar 

  99. Watanabe N, Sano K, Tasugi N, Yamaguchi T, Yamamoto A, Ueno M, Sumiyoshi R, Arakawa T, Koiwa I (2015) Preparation of Co2FeSn Heusler alloys by electrodeposition method. APL Mater 3:041804. doi:10.1063/1.4918639

    Article  Google Scholar 

  100. Alijani V, Winterlik J, Fecher GH, Naghavi SS, Chadov S, Gruhn T, Felser C (2012) Quaternary Heusler compounds Co2−x Rh x MnZ (Z = Ga, Sn, Sb): crystal structure, electronic structure, and magnetic properties. J Phys: Condens Matter 24:046001–046008. doi:10.1088/0953-8984/24/4/046001

    Google Scholar 

  101. Nazmunnahar M, González L, Ilyn M, del Val JJ, Suño JJ, Hernando B, González J (2012) Structural and magnetization changes at high temperature in Co50Mn30In20 alloy. J Nanosci Nanotechnol 12:7442–7445

    Article  Google Scholar 

  102. Gladyshevskii EI (1962) Crystal structure of compounds and phase equilibria in ternary systems of two transition metals and silicon. Sov Powder Metall Met Ceram Transl Poroshkovaya Metall Kiev 1:262–265

    Article  Google Scholar 

  103. Dovbenko O, Stein F, Palm M, Prymak O (2010) Experimental determination of the ternary Co–Al–Nb phase diagram. Intermetallics 18:2191–2207. doi:10.1016/j.intermet.2010.07.004

    Article  Google Scholar 

  104. Palm M, He C, Dovbenko O, Stein F (2012) Liquidus projection and reaction scheme of the Co–Al–Nb system. J Phase Equilibria. doi:10.1088/0022-3727/46/47/475001

    Google Scholar 

  105. He C, Stein F, Palm M (2015) Thermodynamic description of the systems Co–Nb, Al–Nb and Co–Al–Nb. J Alloys Compd 637:361–375. doi:10.1016/j.jallcom.2015.02.182

    Article  Google Scholar 

  106. Carbonari AW, Saxena RN, Pendl W, Mestnik Filho J, Attili RN, Olzon-Dionysio M, De Souza SD (1996) Magnetic hyperfine field in the Heusler alloys Co2YZ (Y = V, Nb, Ta, Cr; Z = Al, Ga). J Magn Magn Mater 163:313–321

    Article  Google Scholar 

  107. Kerkau A, Kreiner G (2010) Crystal structure of niobium aluminium cobalt, Nb (Al0.62Co0.38)2. Z Für Krist-New Cryst Struct 225:621–622

    Google Scholar 

  108. Skolozdra RV, Okhrimovich KO (1971) The Nb–Co–Sn and Nb–Ni–Sn systems. Russ Metall Transl Izv Akad Nauk SSSR Met 6:135–138

    Google Scholar 

  109. Bardos DI, Beck PA (1966) Electron phases in certain ternary alloys of transition metals with silicon. Trans Metall Soc AIME 236:64–69

    Google Scholar 

  110. Hunt CR Jr, Raman A (1968) Alloy chemistry of σ, β-related phases I. Extension of μ and occurance of μ-phases in the ternary systems Nb (Ta)–X–Al (X = Fe Co, Ni, Cu, Cr, Mo). Z Met 59:701–707

    Google Scholar 

  111. Markiv VY, Voroshilov YV, Krypyakevych PI, Cherkashin EE (1964) New compounds of the MnCu2Al and MgZn2 types containing aluminum and gallium. Sov Phys Crystallogr Transl Krist 9:619–620

    Google Scholar 

  112. Gladyshevskii EI, Kuz’ma YB (1958) The crystal structure of ternary compounds in Co–Mn–Ge and Ni–Mn–Ge systems. Visnik Vivskogo Derzhavnogo Univ Seriya Khimichna 5:115–117

    Google Scholar 

  113. Lee YP, Kim RJ, Yoo YJ, Kim KW, Kudryavtsev YV (2006) Spin-photonic, photonic and other relevant properties of Ni 2 MnGe and other Heusler alloys. J Korean Phys Soc. 49(95):2080–2083

    Google Scholar 

  114. Marazza R, Rambaldi G, Ferro R (1974) Ternary intermetallic phases of the cesium chloride or aluminum-copper-manganese (AlCu2Mn) structure type have related 1:1:2 stoichiometries. Atti Della Accad Nazioale Dei Lincei Cl Sci Fis Mat 55(5):518–521

    Google Scholar 

  115. Cherkashyn EE, Gladyshevskii EI, Kuz’ma YB (1958) X-ray structural study of some systems of the transition metals. Zh Neorg Khim 3:650–653

    Google Scholar 

  116. Kuz’ma YB, Gladyshevskii EI, Teslyuk MY (1963) Crystal structure of Mn6Ni16Ge7. Visn Lviv Derzh Univ Ser Khim 6:54–57

    Google Scholar 

  117. Zayak AT, Entel P (2005) A critical discussion of calculated modulated structures, Fermi surface nesting and phonon softening in magnetic shape memory alloys Ni2Mn(Ga, Ge, Al) and Co2Mn(Ga, Ge). J Magn Magn Mater 290–291:874–877. doi:10.1016/j.jmmm.2004.11.401

    Article  Google Scholar 

  118. Buschow KHJ, Van Engen PG (1981) Magnetic and magneto-optical properties of Heusler alloys based on aluminium and gallium. J Magn Magn Mater 25:90–96

    Article  Google Scholar 

  119. Oforka NC, Harworth CW (1987) Phase equilibria of aluminium–chromium–nickel system. Scand J Met 16:184–188

    Google Scholar 

  120. Cutler RW (2011) The 1200 °C isothermal sections of the Ni–Al–Cr and the Ni–Al–Mo ternary phase diagrams. Doctoral Dissertation, The Ohio State University

  121. Zhang W, Qian Z, Tang J, Zhao L, Sui Y, Wang H, Li Y, Su W, Zhang M, Liu Z (2007) Superparamagnetic behaviour in melt-spun Ni2FeAl ribbons. J Phys: Condens Matter 19:096214

    Google Scholar 

  122. Ducher R, Kainuma R, Ishida K (2008) Phase equilibria in the Ni–Fe–Ga alloy system. J Alloys Compd 463:213–219. doi:10.1016/j.jallcom.2007.09.079

    Article  Google Scholar 

  123. Zhang HR, Ma C, Tian HF, Wu GH, Li JQ (2008) Martensitic transformation of Ni2FeGa ferromagnetic shape-memory alloy studied via transmission electron microscopy and electron energy-loss spectroscopy. Phys Rev B 77:214106

    Article  Google Scholar 

  124. Oikawa K, Ota T, Imano Y, Omori T, Kainuma R, Ishida K (2006) Phase equilibria and phase transformation of Co–Ni–Ga ferromagnetic shape memory alloy system. J Phase Equilibria Diffus 27:75–82. doi:10.1361/105497106X92835

    Article  Google Scholar 

  125. Ghosh G (2013) Cu–Ni–Sn ternary phase diagram evaluation. Effenberg G Ed MSI Eureka MSI, Materials Science International Services GmbH, Stuttgart. pp 303–337

  126. Stadnyk YV, Skolozdra RV (1991) Isothermal section of the system Ti–Ni–Sn at 770 K. Izv USSR Neorg Mater 27:2209–2210

    Google Scholar 

  127. Stadnyk YV, Skolozdra RV (1994) Phase structure of Zr–Ni–Sn <50 % at Sn at 800° and >50 % at Sn at 600°. Metally 26:164–167

    Google Scholar 

  128. Stadnyk YV, Romaka LP (2001) Phase equilibria in the Hf–Ni–Sn ternary system and crystal structure of the Hf2Ni2Sn compound. J Alloys Compd 316:169–171

    Article  Google Scholar 

  129. Kenjo T, Kimura Y, Mishima Y (2010) Phase stability and thermoelectric properties of half Heusler compounds. Mater Res Soc Symp Proc 1218:43–48

    Google Scholar 

  130. Populoh S, Aguirre MH, Brunko OC, Galazka K, Lu Y, Weidenkaff A (2012) High figure of merit in (Ti, Zr, Hf) NiSn half-Heusler alloys. Scr Mater 66:1073–1076

    Article  Google Scholar 

  131. Makongo JPA, Misra DK, Zhou X, Pant A, Shabetai MR, Su X, Uher C, Stokes KL, Poudeu PFP (2011) Simultaneous large enhancements in thermopower and electrical conductivity of Bulk nanostructured half-Heusler alloys. J Am Chem Soc 133:18843–18852. doi:10.1021/ja206491j

    Article  Google Scholar 

  132. Koizumi Y, Ro Y, Nakazawa S, Harada H (1997) NiTi-base intermetallic alloys strengthened by Al substitution. Mater Sci Eng A 223:36–41

    Article  Google Scholar 

  133. Jung J, Ghosh G, Olson GB (2003) A comparative study of precipitation behavior of Heusler phase (Ni2TiAl) from B2–TiNi in Ni–Ti–Al and Ni–Ti–Al–X (X = Hf, Pd, Pt, Zr) alloys. Acta Mater 51:6341–6357. doi:10.1016/j.actamat.2003.08.003

    Article  Google Scholar 

  134. Liebscher CH, Radmilovic V, Dahmen U, Asta M, Ghosh G (2013) On the formation of hierarchically structured L21-Ni2TiAl type precipitates in a ferritic alloy. J Mater Sci 48:2067–2075. doi:10.1007/s10853-012-6980-3

    Article  Google Scholar 

  135. Polvani RS, Strutt PR, Tzeng W (1976) High-intrinsic creep strength of non-stoichiometric nickel-aluminum-titanium (Ni2AlTi). Thirty-Fourth Annual Electron Microscopy Society of American Meeting, vol. 34, pp 594–595

  136. Kaufman L, Nesor H (1974) Calculation of superalloy phase diagrams: Part II. Metall Trans 5:1623–1629

    Article  Google Scholar 

  137. Ziebeck K, Neumann K-U (2001) Ni-Hf-Al. In: Alloys Compd. -Elem. Main Group Elem. Part 2. Springer, pp 72–76

  138. Garg A, Raj SV, Noebe RD, Nathal MV, Darolia R (1998) Plastic instability during creep deformation of a NiAl–Hf single-crystal alloy—a case study. Metall Mater Trans A 29:179–189

    Article  Google Scholar 

  139. Whittenberger JD, Locci IE, Darolia R, Bowman R (1999) 1300 K creep behavior of [001] oriented Ni–49Al–1Hf (at.%) single crystals. Mater Sci Eng, A 268:165–183

    Article  Google Scholar 

  140. Cui CY, Guo JT, Ye HQ (2006) Precipitation behavior of Heusler phase (Ni2AlHf) in multiphase NiAl alloy. J Mater Sci 41:2981–2987. doi:10.1007/s10853-006-6732-3

    Article  Google Scholar 

  141. Cornish L, Cupid D, Gröbner J, Malfliet A (2009) Al–Nb–Ni ternary phase diagram evaluation. MSI Eureka Effenberg G Ed MSI, Materials Science International Service GmbH, Stuttgart

  142. Zakharov A (1993) Aluminum–nickel–tantalum. In: Petzow G, Effenberg G (eds) Ternary alloys, vol 7. Springer, New York, pp 483–497

    Google Scholar 

  143. Stearns MB (1978) Conduction electron polarization and moment perturbations in dilute Fe3Si based alloys. J Appl Phys 49:1555–1557

    Article  Google Scholar 

  144. Reitz JR, Stearns MB (1979) Theory of spin wave spectra in Heusler alloys. J Appl Phys 50:2066–2068

    Article  Google Scholar 

  145. Kübler J, William AR, Sommers CB (1983) Formation and coupling of magnetic moments in Heusler alloys. Phys Rev B 28:1745

    Article  Google Scholar 

  146. Prasad RVS, Phanikumar G (2009) Amorphous and nano crystalline phase formation in Ni2MnGa ferromagnetic shape memory alloy synthesized by melt spinning. J Mater Sci 44:2553–2559. doi:10.1007/s10853-009-3333-y

    Article  Google Scholar 

  147. Mukadam MD, Yusuf SM, Bhatt P (2013) Tuning the magnetocaloric properties of the Ni2+xMn1−xSn Heusler alloys. J Appl Phys 113:3911

    Article  Google Scholar 

  148. Kainuma R, Ise M, Ishikawa K, Ohnuma I, Ishida K (1998) Phase equilibria and stability of the B2 phase in the Ni–Mn–Al and Co–Mn–Al systems. J Alloys Compd 269:173–180

    Article  Google Scholar 

  149. Millán JN, Sandlöbes S, Al-Zubi A, Hickel T, Choi P, Neugebauer J, Ponge D, Raabe D (2014) Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe–Mn maraging steels. Acta Mater 76:94–105. doi:10.1016/j.actamat.2014.05.016

    Article  Google Scholar 

  150. Miyamoto T, Nagasako M, Kainuma R (2013) Phase equilibria in the Ni–Mn–In alloy system. J Alloys Compd 549:57–63. doi:10.1016/j.jallcom.2012.08.128

    Article  Google Scholar 

  151. Banik S, Singh S, Rawat R, Mukhopadhyay PK, Ahuja BL, Awasthi AM, Barman SR, Sampathkumaran EV (2009) Variation of magnetoresistance in Ni2Mn Ga with composition. J Appl Phys 106:103919

    Article  Google Scholar 

  152. Babita I, Raja MM, Gopalan R, Chandrasekaran V, Ram S (2007) Phase transformation and magnetic properties in Ni–Mn–Ga Heusler alloys. J Alloys Compd 432:23–29

    Article  Google Scholar 

  153. Cherechukin AA, Takagi T, Matsumoto M, Buchel’Nikov VD (2004) Magnetocaloric effect in Ni2+xMn 1−xGa Heusler alloys. Phys Lett A 326:146–151

    Article  Google Scholar 

  154. Pons J, Chernenko VA, Santamarta R, Cesari E (2000) Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys. Acta Mater 48:3027–3038

    Article  Google Scholar 

  155. Zheng H, Wang W, Xue S, Zhai Q, Frenzel J, Luo Z (2013) Composition-dependent crystal structure and martensitic transformation in Heusler Ni–Mn–Sn alloys. Acta Mater 61:4648–4656

    Article  Google Scholar 

  156. Chieda Y, Kanomata T, Fukushima K, Matsubayashi K, Uwatoko Y, Kainuma R, Oikawa K, Ishida K, Obara K, Shishido T (2009) Magnetic properties of Mn-rich Ni2MnSn Heusler alloys under pressure. J Alloys Compd 486:51–54

    Article  Google Scholar 

  157. Hu Q-M, Li C-M, Yang R, Kulkova SE, Bazhanov DI, Johansson B, Vitos L (2009) Site occupancy, magnetic moments, and elastic constants of off-stoichiometric Ni2MnGa from first-principles calculations. Phys Rev B 79:144112

    Article  Google Scholar 

  158. Wang X, Shang J-X, Wang F-H, Jiang C-B, Xu H-B (2014) The structural stability and magnetic properties of the ferromagnetic Heusler alloy Ni–Mn–Sn: a first principle investigation. J Magn Magn Mater 355:173–179. doi:10.1016/j.jmmm.2013.12.017

    Article  Google Scholar 

  159. Xu N, Raulot JM, Li ZB, Bai J, Yang B, Zhang YD, Meng XY, Zhao X, Zuo L, Esling C (2015) Composition-dependent structural and magnetic properties of Ni–Mn–Ga alloys studied by ab initio calculations. J Mater Sci 50:3825–3834. doi:10.1007/s10853-015-8951-y

    Google Scholar 

  160. Ducher R, Kainuma R, Ishida K (2008) Phase equilibria in the Ni–Co–Ga alloy system. J Alloys Compd 466:208–213

    Article  Google Scholar 

  161. Ishida K, Kainuma R, Ueno N, Nishizawa T (1991) Ductility enhancement in NiAl (B2)-base alloys by microstructural control. Metall Trans A 22:441–446

    Article  Google Scholar 

  162. Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K (2001) Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co–Ni–Ga and Co–Ni–Al systems. Mater Trans 42:2472–2475

    Article  Google Scholar 

  163. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Article  Google Scholar 

  164. Li J-F, Liu W-S, Zhao L-D, Zhou M (2010) High-performance nanostructured thermoelectric materials. NPG Asia Mater 2:152–158. doi:10.1038/asiamat.2010.138

    Article  Google Scholar 

  165. Birkel CS, Douglas JE, Lettiere BR, Seward G, Verma N, Zhang Y, Pollock TM, Seshadri R, Stucky GD (2013) Improving the thermoelectric properties of half-Heusler TiNiSn through inclusion of a second full-Heusler phase: microwave preparation and spark plasma sintering of TiNi1+xSn. Phys Chem Chem Phys 15:6990. doi:10.1039/c3cp50918d

    Article  Google Scholar 

  166. Ur S-C, Nash P, Kim I-H (2004) Thermoelectric properties of Zn4Sb3 processed by sinter-forging. Mater Lett 58:2937–2941. doi:10.1016/j.matlet.2004.05.027

    Article  Google Scholar 

  167. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979. doi:10.1016/j.pmatsci.2008.03.002

    Article  Google Scholar 

  168. Villars P (2014) Material Phases Data System (MPDS), CH-6354 Vitznau, Switzerland; Springer Materials; c_0200229. http://materials.springer.com.ezproxy.gl.iit.edu/isp/phase-diagram/docs/c_0200229. Accessed 8 Apr 2015

  169. Villars P (2014) Material Phases Data System (MPDS), CH-6354 Vitznau, Switzerland; Springer Materials; c_0975730. http://materials.springer.com.ezproxy.gl.iit.edu/isp/phase-diagram/docs/c_0975730. Accessed 8 Apr 2015

  170. Seibold A (1981) Phasengleichgewichte in den ternären Systemen Ti–Fe–O und Ti–Al–Fe. Z Für Met 72:712–719

    Google Scholar 

  171. Villars P (2014) Material Phases Data System (MPDS), CH-6354 Vitznau, Switzerland; Springer Materials; c_0975731. http://materials.springer.com.ezproxy.gl.iit.edu/isp/phase-diagram/docs/c_0975731. Accessed 8 Apr 2015

  172. Kazuhiro Ishikawa, Ryosuke Kainuma, Kiyohito Ishida, MSIT® MSI Eureka Evaluation Report 10.10909.2.9 System Name: Al–Co–Ti Report

  173. Ishikawa K, Himuro Y, Ohnuma I, Kainuma R, Aoki K, Ishida K (2001) Phase equilibria in the Co–Ti portion of the Co–Al–Ti ternary system. J Phase Equilibria 22:219–226

    Article  Google Scholar 

  174. Pierre Villars Al–Co–Ti Isothermal Section of Ternary Phase Diagram—Springer Materials. In: Mater. Phases Data Syst. MPDS. http://materials.springer.com.ezproxy.gl.iit.edu/isp/phase-diagram/docs/c_0200101. Accessed 4 Aug 2015

  175. Villars P (2014) Material Phases Data System (MPDS), CH-6354 Vitznau, Switzerland; SpringerMaterials; c_0925091. http://materials.springer.com.ezproxy.gl.iit.edu/isp/phase-diagram/docs/c_0925091. Accessed 8 Apr 2015

  176. Vogel R, Rosenthal K (1935) Das System Eisen-Kobalt-Kobaltsilizid-Eisensilizid. Arch Für Eisenhüttenwes 9:293–299

    Google Scholar 

  177. Belyavina NN, Markiv VY (1978) The Hf–Co–Ga system. Dopovidi Akad Nauk Ukr RSR Seriya Fiz-Mat Ta Tekhnichni Nauki 4:362–365

    Google Scholar 

  178. Villars P (2014) Material Phases Data System (MPDS), CH-6354 Vitznau, Switzerland; Springer Materials; c_0925212. http://materials.springer.com.ezproxy.gl.iit.edu/isp/phase-diagram/docs/c_0925212. Accessed 8 Apr 2015

  179. Romaka VV, Rogl P, Romaka L, Stadnyk Y, Melnychenko N, Grytsiv A, Falmbigl M, Skryabina N (2013) Phase equilibria, formation, crystal and electronic structure of ternary compounds in Ti–Ni–Sn and Ti–Ni–Sb ternary systems. J Solid State Chem 197:103–112. doi:10.1016/j.jssc.2012.08.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Nash.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, M., Hasier, J. & Nash, P. A review of phase equilibria in Heusler alloy systems containing Fe, Co or Ni. J Mater Sci 51, 50–70 (2016). https://doi.org/10.1007/s10853-015-9389-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9389-y

Keywords

Navigation