Skip to main content

Face-Centered Cubic High-Entropy Alloys

  • Chapter
  • First Online:
Advanced Multicomponent Alloys

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 918 Accesses

Abstract

Minor- and macro-alloying has long been used to achieve desirable properties to metallic materials. This traditional alloy design strategy involves adding a small number of secondary elements to a primary element for optimized properties. In the early twenty-first century, a new multiple principal elements alloying strategy called high-entropy alloys (HEAs) emerged. This alloy design strategy has overwhelming advantages over traditional alloys in seeking high performance, since it provides an infinite compositional design space and lots of HEAs with outstanding properties have been developed. The objective of this chapter is (1) to summarize the basic and salient features of HEAs, (2) to review the mechanical properties of HEAs with the face center cubic structure at low temperatures and hydrogen-containing environments, and (3) to assess the recent advancement in precipitated-strengthened high-entropy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cantor B, Chang I, Knight P, Vincent A (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375:213–218

    Google Scholar 

  2. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Funct Mater 6(5):299–303

    CAS  Google Scholar 

  3. Jien-Wei Y (2006) Recent progress in high entropy alloys. Ann Chim Sci Mat 31(6):633–648

    Article  Google Scholar 

  4. Ding Q, Zhang Y, Chen X, Fu X, Chen D, Chen S, Gu L, Wei F, Bei H, Gao Y (2019) Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574(7777):223–227

    Article  CAS  Google Scholar 

  5. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201):1153–1158

    Article  CAS  Google Scholar 

  6. Gludovatz B, Hohenwarter A, Thurston KV, Bei H, Wu Z, George EP, Ritchie RO (2016) Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun 7(1):1–8

    Article  CAS  Google Scholar 

  7. Kumar NK, Li C, Leonard K, Bei H, Zinkle S (2016) Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater 113:230–244

    Article  CAS  Google Scholar 

  8. Nygren K, Bertsch K, Wang S, Bei H, Nagao A, Robertson I (2018) Hydrogen embrittlement in compositionally complex FeNiCoCrMn FCC solid solution alloy. Curr Opin Solid State Mater Sci 22(1):1–7

    Article  CAS  Google Scholar 

  9. Nygren KE, Wang S, Bertsch KM, Bei H, Nagao A, Robertson IM (2018) Hydrogen embrittlement of the equi-molar FeNiCoCr alloy. Acta Mater 157:218–227

    Article  CAS  Google Scholar 

  10. Pu Z, Chen Y, Dai L (2018) Strong resistance to hydrogen embrittlement of high-entropy alloy. Mater Sci Eng A 736:156–166

    Google Scholar 

  11. Wu Z, Bei H, Pharr GM, George EP (2014) Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater 81:428–441

    Article  CAS  Google Scholar 

  12. Liu W, Yang T, Liu C (2018) Precipitation hardening in CoCrFeNi-based high entropy alloys. Mater Chem Phys 210:2–11

    Article  CAS  Google Scholar 

  13. Liu W, Lu Z, He J, Luan J, Wang Z, Liu B, Liu Y, Chen M, Liu C (2016) Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater 116:332–342

    Article  CAS  Google Scholar 

  14. Pickering E, Muñoz-Moreno R, Stone H, Jones N (2016) Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr Mater 113:106–109

    Article  CAS  Google Scholar 

  15. Shun T-T, Chang L-Y, Shiu M-H (2013) Age-hardening of the CoCrFeNiMo0. 85 high-entropy alloy. Mater Charact 81:92–96

    Google Scholar 

  16. Shun T-T, Hung C-H, Lee C-F (2010) The effects of secondary elemental Mo or Ti addition in Al0. 3CoCrFeNi high-entropy alloy on age hardening at 700 C. J Alloys Compd 495(1):55–58

    Google Scholar 

  17. He J, Wang H, Huang H, Xu X, Chen M, Wu Y, Liu X, Nieh T, An K, Lu Z (2016) A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater 102:187–196

    Article  CAS  Google Scholar 

  18. Ming K, Bi X, Wang J (2017) Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys. Scr Mater 137:88–93

    Article  CAS  Google Scholar 

  19. Zhao Y, Yang T, Tong Y, Wang J, Luan J, Jiao Z, Chen D, Yang Y, Hu A, Liu C (2017) Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater 138:72–82

    Article  CAS  Google Scholar 

  20. Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC (2016) Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534(7606):227–230

    Article  CAS  Google Scholar 

  21. He J, Wang H, Wu Y, Liu X, Mao H, Nieh T, Lu Z (2016) Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys. Intermetallics 79:41–52

    Article  CAS  Google Scholar 

  22. Liu W, He J, Huang H, Wang H, Lu Z, Liu C (2015) Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 60:1–8

    Article  CAS  Google Scholar 

  23. Otto F, Dlouhý A, Pradeep KG, Kuběnová M, Raabe D, Eggeler G, George EP (2016) Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater 112:40–52

    Article  CAS  Google Scholar 

  24. Ma D, Grabowski B, Körmann F, Neugebauer J, Raabe D (2015) Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater 100:90–97

    Article  CAS  Google Scholar 

  25. Zhang F, Wu Y, Lou H, Zeng Z, Prakapenka VB, Greenberg E, Ren Y, Yan J, Okasinski JS, Liu X (2017) Polymorphism in a high-entropy alloy. Nat Commun 8(1):1–7

    CAS  Google Scholar 

  26. Tracy CL, Park S, Rittman DR, Zinkle SJ, Bei H, Lang M, Ewing RC, Mao WL (2017) High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat Commun 8(1):1–6

    Article  CAS  Google Scholar 

  27. Zhao Y, Lee D-H, Seok M-Y, Lee J-A, Phaniraj MP, Suh J-Y, Ha H-Y, Kim J-Y, Ramamurty U, Jang J-I (2017) Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scr Mater 135:54–58

    Article  CAS  Google Scholar 

  28. Koyama M, Wang H, Verma VK, Tsuzaki K, Akiyama E (2020) Effects of Mn content and grain size on hydrogen embrittlement susceptibility of face-centered cubic high-entropy alloys. Metall Mater Trans A 51(11):5612–5616

    Article  CAS  Google Scholar 

  29. Liu J, Guo X, Lin Q, He Z, An X, Li L, Liaw PK, Liao X, Yu L, Lin J (2019) Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures. Sci China Mater 62(6):853–863

    Article  CAS  Google Scholar 

  30. Yi J, Zhuang X, He J, He M, Liu W, Wang S (2021) Effect of Mo doping on the gaseous hydrogen embrittlement of a CoCrNi medium-entropy alloy. Corros Sci 189:109628

    Article  CAS  Google Scholar 

  31. Gangireddy S, Gwalani B, Soni V, Banerjee R, Mishra RS (2019) Contrasting mechanical behavior in precipitation hardenable AlXCoCrFeNi high entropy alloy microstructures: Single phase FCC vs. dual phase FCC-BCC. Mater Sci Eng A 739:158–166

    Google Scholar 

  32. Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Wang Z, Jie J, Cao Z (2014) A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep 4(1):1–5

    Google Scholar 

  33. Fan R, Wang L, Zhao L, Wang L, Zhao S, Zhang Y, Cui B (2022) Synergistic effect of Nb and Mo alloying on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. Mater Sci Eng A 829:142–153

    Google Scholar 

  34. Yang T, Zhao Y, Tong Y, Jiao Z, Wei J, Cai J, Han X, Chen D, Hu A, Kai J (2018) Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362(6417):933–937

    Article  CAS  Google Scholar 

  35. Yang T, Zhao Y, Liu W, Kai J, Liu C (2018) L12-strengthened high-entropy alloys for advanced structural applications. J Mater Res 33(19):2983–2997

    Article  CAS  Google Scholar 

  36. Cao B, Yang T, Liu W-H, Liu C (2019) Precipitation-hardened high-entropy alloys for high-temperature applications: a critical review. MRS Bull 44(11):854–859

    Article  Google Scholar 

  37. Cao B, Zhao Y, Yang T, Liu CT (2021) L12-strengthened Co-rich alloys for high-temperature structural applications: a critical review. Adv Eng Mater 23(10):2100453

    Article  CAS  Google Scholar 

  38. Cao B, Kong H, Ding Z, Wu S, Luan J, Jiao Z, Lu J, Liu C, Yang T (2021) A novel L12-strengthened multicomponent Co-rich high-entropy alloy with both high γ′-solvus temperature and superior high-temperature strength. Scr Mater 199:113826

    Article  CAS  Google Scholar 

  39. Suzuki A, Inui H, Pollock TM (2015) L12-strengthened cobalt-base superalloys. Annu Rev Mater Res 45:345–368

    Article  CAS  Google Scholar 

  40. Gwalani B, Choudhuri D, Soni V, Ren Y, Styles M, Hwang J, Nam S, Ryu H, Hong SH, Banerjee R (2017) Cu assisted stabilization and nucleation of L12 precipitates in Al0. 3CuFeCrNi2 fcc-based high entropy alloy. Acta Mater 129:170–182

    Google Scholar 

  41. Gwalani B, Soni V, Choudhuri D, Lee M, Hwang J, Nam S, Ryu H, Hong SH, Banerjee R (2016) Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys-Al0. 3CoFeCrNi and Al0. 3CuFeCrNi2. Scr Mater 123:130–134

    Google Scholar 

  42. Yang T, Zhao Y, Fan L, Wei J, Luan J, Liu W, Wang C, Jiao Z, Kai J, Liu C (2020) Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys. Acta Mater 189:47–59

    Article  CAS  Google Scholar 

  43. Daoud H, Manzoni A, Wanderka N, Glatzel U (2015) High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy). Jom 67(10):2271–2277

    Article  CAS  Google Scholar 

  44. Haas S, Manzoni AM, Krieg F, Glatzel U (2019) Microstructure and mechanical properties of precipitate strengthened high entropy alloy Al10Co25Cr8Fe15Ni36Ti6 with additions of hafnium and molybdenum. Entropy 21(2):169

    Article  CAS  Google Scholar 

  45. Chang Y-J, Yeh A-C (2015) The evolution of microstructures and high temperature properties of AlxCo1. 5CrFeNi1. 5Tiy high entropy alloys. J Alloys Compd 653:379–385

    Google Scholar 

  46. Antonov S, Detrois M, Tin S (2018) Design of novel precipitate-strengthened Al–Co–Cr–Fe–Nb–Ni high-entropy superalloys. Metall Mater Trans A 49(1):305–320

    Article  CAS  Google Scholar 

  47. Lass EA, Sauza DJ, Dunand DC, Seidman DN (2018) Multicomponent γ’-strengthened Co-based superalloys with increased solvus temperatures and reduced mass densities. Acta Mater 147:284–295

    Article  CAS  Google Scholar 

  48. Sundman B, Lukas H, Fries S (2007) Computational thermodynamics: the Calphad method. Cambridge university press, Cambridge

    Google Scholar 

  49. Zhang C, Gao MC (2016) CALPHAD modeling of high-entropy alloys. Springer, pp 399–444

    Book  Google Scholar 

  50. Zhao Y, Yang T, Han B, Luan J, Chen D, Kai W, Liu CT, Kai J-J (2019) Exceptional nanostructure stability and its origins in the CoCrNi-based precipitation-strengthened medium-entropy alloy. Mater Res Lett 7(4):152–158

    Article  CAS  Google Scholar 

  51. Irisarri A, Urcola J, Fuentes M (1985) Kinetics of growth of γ′-precipitates in Ni–6· 75AI alloy. Mater Sci Technol 1(7):516–519

    Article  CAS  Google Scholar 

  52. Davies C, Nash P, Stevens R (1980) Precipitation in Ni-Co-Al alloys. J Mater Sci 15(6):1521–1532

    Article  CAS  Google Scholar 

  53. Pandey P, Kashyap S, Palanisamy D, Sharma A, Chattopadhyay K (2019) On the high temperature coarsening kinetics of γ′ precipitates in a high strength Co37. 6Ni35. 4Al9. 9Mo4. 9Cr5. 9Ta2. 8Ti3. 5 fcc-based high entropy alloy. Acta Mater 177:82–95

    Google Scholar 

  54. Sauza DJ, Dunand DC, Noebe RD, Seidman DN (2019) γ’-(L12) precipitate evolution during isothermal aging of a CoAlWNi superalloy. Acta Mater 164:654–662

    Article  CAS  Google Scholar 

  55. Lapin J, Gebura M, Pelachová T, Nazmy M (2008) Coarsening kinetics of cuboidal γ’precipitates in single crystal nickel base superalloy CMSX-4. Kovove Mater 46:313–322

    CAS  Google Scholar 

  56. Tsai K-Y, Tsai M-H, Yeh J-W (2013) Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater 61(13):4887–4897

    Article  CAS  Google Scholar 

  57. Cao B, Yang T, Fan L, Luan J, Jiao Z, Liu C (2020) Refractory alloying additions on the thermal stability and mechanical properties of high-entropy alloys. Mater Sci Eng A 797:140020

    Google Scholar 

  58. Neumeier S, Rehman H, Neuner J, Zenk C, Michel S, Schuwalow S, Rogal J, Drautz R, Göken M (2016) Diffusion of solutes in fcc Cobalt investigated by diffusion couples and first principles kinetic Monte Carlo. Acta Mater 106:304–312

    Article  CAS  Google Scholar 

  59. Li X, Saunders N, Miodownik A (2002) The coarsening kinetics of γ′ particles in nickel-based alloys. Metall Mater Trans A 33(11):3367–3373

    Article  Google Scholar 

  60. Gelles D, Garner F, Brager H (1981) Effects of radiation on materials. In: 10th international symposium, ASTM STP, p 735e753

    Google Scholar 

  61. Tsao TK, Yeh AC, Kuo CM, Murakami H (2017) On the superior high temperature hardness of precipitation strengthened high entropy Ni-based alloys. Adv Eng Mater 19(1):1600475

    Article  CAS  Google Scholar 

  62. Tsao T-K, Yeh A-C, Kuo C-M, Kakehi K, Murakami H, Yeh J-W, Jian S-R (2017) The high temperature tensile and creep behaviors of high entropy superalloy. Sci Rep 7(1):1–9

    Article  CAS  Google Scholar 

  63. Yg N, Ohtomo A, Saiga Y (1976) Directional solidification of Rene 80. Trans Jpn Inst Met 17(6):323–329

    Article  Google Scholar 

  64. Suzuki A, Pollock TM (2008) High-temperature strength and deformation of γ/γ′ two-phase Co–Al–W-base alloys. Acta Mater 56(6):1288–1297

    Article  CAS  Google Scholar 

  65. Cao B, Xu W-W, Yu C, Wu S, Kong H, Ding Z, Zhang T, Luan J, Xiao B, Jiao Z (2022) L12-strengthened multicomponent Co–Al–Nb-based alloys with high strength and matrix-confined stacking-fault-mediated plasticity. Acta Mater 229:117763

    Article  CAS  Google Scholar 

  66. Beauchamp P, Douin J, Veyssière P (1987) Dependence of the antiphase boundary energy upon orientation in the L12 structure. Philos Mag A 55(5):565–581

    Article  CAS  Google Scholar 

  67. Milligan WW, Antolovich SD (1991) The mechanisms and temperature dependence of superlattice stacking fault formation in the single-crystal superalloy PWA 1480. Metall Trans A 22(10):2309–2318

    Article  Google Scholar 

  68. Cao B, Wei D, Zhang X, Kong H, Zhao Y, Hou J, Luan J, Jiao Z, Liu Y, Yang T (2022) Intermediate temperature embrittlement in a precipitation-hardened high-entropy alloy: the role of heterogeneous strain distribution and environmentally assisted intergranular damage. Mater Today Phys 24:100653

    Article  CAS  Google Scholar 

  69. Cao B, Kong H, Fan L, Luan J, Jiao Z, Kai J, Yang T, Liu C (2021) Heterogenous columnar-grained high-entropy alloys produce exceptional resistance to intermediate-temperature intergranular embrittlement. Scr Mater 194:113622

    Article  CAS  Google Scholar 

  70. Wu S, Wang G, Wang Q, Jia Y, Yi J, Zhai Q, Liu J, Sun B, Chu H, Shen J (2019) Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure. Acta Mater 165:444–458

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, W., Cao, B. (2022). Face-Centered Cubic High-Entropy Alloys. In: Jiao, Z., Yang, T. (eds) Advanced Multicomponent Alloys. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-4743-8_2

Download citation

Publish with us

Policies and ethics