Skip to main content
Log in

Recent advances in the modification of polyacrylate latexes

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyacrylate latexes present good film-forming property, and therefore are used in a wide range of applications including coatings, adhesives, additives for paper, textiles, wood, and leather. However, some drawbacks, such as poor elasticity and low hardness have restricted their applications. This review summarizes recent development of polyacrylate latexes modified by polyurethane, organic fluorine, and inorganic nanoparticles, separately, which most often exhibit superior properties to those of their individual components. For each modification method, a comment is given based on our knowledge and related research experience. At last, some perspectives on the future research and development of modification of polyacrylate latexes are concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Samyn P, Deconinck M, Schoukens G, Stanssens D, Vonck L, Abbeele HV (2010) Modifications of paper and paperboard surfaces with a nanostructured polymer coating. Prog Org Coat 69:442–454

    Google Scholar 

  2. Nuessle AC, Kine BB (1953) Acrylic resins in textile processing. Ind Eng Chem 45:1287–1293

    Google Scholar 

  3. Rodrıguez R, Alarcon CH, Ekanayake P, McDonald PJ, Keddie JL, Barandiaran MJ, Asua JM (2008) Correlation of silicone incorporation into hybrid acrylic coatings with the resulting hydrophobic and thermal properties. Macromolecules 41:8537–8546

    Google Scholar 

  4. Zou M, Zhao Q, Zhang Z (2007) Preparation and characterization of polysiloxane–polyacrylates composite lattices by two seeded emulsion polymerization and their film properties. J Appl Polym Sci 103:1406–1411

    Google Scholar 

  5. Zou M, Huang F, Nie J, Zhang Z, Ge X (2005) Preparation and characterization of polysiloxane–polyacrylates composite latices and their film properties. Polym Int 54:861–869

    Google Scholar 

  6. Tamai T, Watanabe M (2006) Acrylic polymer/silica hybrids prepared by emulsifier-free emulsion polymerization and the sol–gel process. J Polym Sci A 44:273–280

    Google Scholar 

  7. Watanabe M, Tamai T (2006) Acrylic polymer/silica organic–inorganic hybrid emulsions for coating materials: role of the silane coupling agent. J Polym Sci A 44:4736–4742

    Google Scholar 

  8. Peruzzo PJ, Anbinde PS, Pardini OR, Vega J, Costa CA, Galembeck F, Amalvy JI (2011) Waterborne polyurethane/acrylate: comparison of hybrid and blend systems. Prog Org Coat 72:429–437

    Google Scholar 

  9. Lin M, Chu F, Guyot A, Putaux J, Bourgeat-Lami E (2005) Silicone–polyacrylate composite latex particles. Particles formation and film properties. Polymer 46:1331–1337

    Google Scholar 

  10. Guyot A, Landfester K, Schork FJ, Wang C (2007) Hybrid polymer latexes. Prog Polym Sci 32:1439–1461

    Google Scholar 

  11. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Google Scholar 

  12. Imae T (2003) Fluorinated polymers. Curr Opin Colloid Interf Sci 8:307–314

    Google Scholar 

  13. Castelvetro V, Vita CD (2004) Nanostructured hybrid materials from aqueous polymer dispersions. Adv Colloid Interf Sci 108–109:167–185

    Google Scholar 

  14. Lee SK, Kim BK (2009) High solid and high stability waterborne polyurethanes via ionic groups in soft segments and chain termini. J Colloid Interf Sci 336:208–214

    Google Scholar 

  15. Yen MS, Tsai PY, Hong PD (2006) The solution properties and membrane properties of polydimethylsiloxane waterborne polyurethane blended with the waterborne polyurethanes of various kinds of soft segments. Colloids Surf A 279:1–9

    Google Scholar 

  16. Kuan HC, Su HY, Ma CCM (2005) Synthesis and characterization of polysilicic acid nanoparticles/waterborne polyurethane nanocomposite. J Mater Sci 40:6063–6070. doi:10.1007/s10853-005-1302-7

    Google Scholar 

  17. Li CY, Chiu WY, Don TM (2005) Preparation of polyurethane dispersions by miniemulsion polymerization. J Polym Sci, Part A 43:4870–4881

    Google Scholar 

  18. Barrère M, Landfester K (2003) High molecular weight polyurethane and polymer hybrid particles in aqueous miniemulsion. Macromolecules 36:5119–5125

    Google Scholar 

  19. Okamoto Y, Hasegawa Y, Yoshino F (1996) Urethane/acrylic composite polymer emulsions. Prog Org Coat 29:175–182

    Google Scholar 

  20. Athawale VD, Kulkarni MA (2009) Preparation and properties of urethane/acrylate composite by emulsion polymerization technique. Prog Org Coat 65:392–400

    Google Scholar 

  21. Wang C, Chu F, Graillat C, Guyot A (2005) Hybrid acrylicpolyurethane polymer latexes. II.Mechanical properties. Polym Advan Technol 16:139–145

    Google Scholar 

  22. Kukanja D, Golob J, Valant AZ, Krajnc M (2000) Structure and properties of acrylic-polyurethane hybrid emulsions and comparison with physical blends. J Appl Polym Sci 78:67–80

    Google Scholar 

  23. Wu L, You B, Li D (2002) Synthesis and characterization of urethane/acrylate composite latex. J Appl Polym Sci 84:1620–1628

    Google Scholar 

  24. Hirose M, Kadowaki F, Zhou J (1997) The structure and properties of core-shell type acrylic-polyurethane hybrid aqueous emulsions. Prog Org Coat 31:157–169

    Google Scholar 

  25. Dong A, An Y, Feng S, Sun D (1999) Preparation and morphology studies of core-shell type waterborne polyacrylate–polyurethane microspheres. J Colloid Interf Sci 214:118–122

    Google Scholar 

  26. Hirose M, Zhou J, Nagai K (2000) The structure and properties of acrylic-polyurethane hybrid emulsions. Prog Org Coat 38:27–34

    Google Scholar 

  27. Li M, Daniels ES, Dimonie V, Sudol ED, El-Aasser MS (2005) Preparation of polyurethane/acrylic hybrid nanoparticles via a miniemulsion polymerization process. Macromolecules 38:4183–4192

    Google Scholar 

  28. Schork FJ, Luo Y, Smulders W, Russum JP, Butte A, Fontenot K (2005) Miniemulsion polymerization. Polym Part Adv Polym Sci 175:129–255

    Google Scholar 

  29. Landfester K, Bechthold N, Forster S, Antonietti M (1999) Evidence for the preservation of the particle identity in miniemulsion polymerization. Macromol Rapid Commun 20:81–84

    Google Scholar 

  30. Gooch JW, Dong H, Schork FJ (2000) Waterborne oil-modified polyurethane coatings via hybrid miniemulsion polymerization. J Appl Polym Sci 76:105–114

    Google Scholar 

  31. Wang C, Chu F, Graillat C, Guyot A (2003) Hybrid acrylic-polyurethane latexes by miniemulsion polymerization. Polym React Eng 11:541–562

    Google Scholar 

  32. Wang C, Chu F, Graillat C, Guyot A, Gauthier C, Chapel JP (2005) Hybrid polymer latexes: acrylics–polyurethane from miniemulsion polymerization: properties of hybrid latexes versus blends. Polymer 46:1113–1124

    Google Scholar 

  33. Wang C, Chu F, Guyot A, Gauthier C, Boisson F (2006) Hybrid acrylic-polyurethane latexes: emulsion versus miniemulsion polymerization. J Appl Polym Sci 101:3927–3941

    Google Scholar 

  34. Wang C, Chu F (2006) Mechanical properties of films from hybrid acrylic-polyurethane polymer colloids. J Disper Sci Technol 27:325–330

    Google Scholar 

  35. Lee JR, Jin FL, Park SJ, Park JM (2004) Study of new fluorine-containing epoxy resin for low dielectric constant. Surf Coat Technol 180–181:650–654

    Google Scholar 

  36. Ha JW, Park IJ, Lee SB (2005) Hydrophobicity and sliding behavior of liquid droplets on the fluorinated latex films. Macromolecules 38:736–744

    Google Scholar 

  37. Morent R, DeGeyter N, Verschuren J, DeClerck K, Kiekens P, Leys C (2008) Non-thermal plasma treatment of textiles. Surf Coat Technol 202:3427–3449

    Google Scholar 

  38. Zhang C, Chen Y (2005) Investigation of fluorinated polyacrylate latex with core–shell structure. Polym Int 54:1027–1033

    Google Scholar 

  39. Saïdi S, Guittard F, Guimon C, Geribaldi S (2006) Synthesis and characterization of copolymers based on styrene and partially fluorinated acrylates. Eur Polym J 42:702–710

    Google Scholar 

  40. Timperley CM, Arbon RE, Bird M (2003) Bis(fluoroalkyl) acrylic and methacrylic phosphate monomers, their polymers and some of their properties. J Fluor Chem 121:23–31

    Google Scholar 

  41. Malshe VC, Sangaj NS (2005) Fluorinated acrylic copolymers (I) study of clear coatings. Prog Org Coat 91:512–516

    Google Scholar 

  42. Linemann RF, Malner TE, Brandsch R, Bar G, Ritter W, Mulhaupt R (1999) Latex blends of fluorinated and fluorine-free acrylates: emulsion polymerization and tapping mode atomic force microscopy of film formation. Macromolecules 32:1715–1721

    Google Scholar 

  43. Zhang K, Feng H, Pan Z, Liu D (2001) Synthesis and properties of polyacrylate emulsions modified by fluorine-containing emulsion. J Tsinghua Univ 41:50–52

    Google Scholar 

  44. Hu Y, Zhang C, Chen Y, Liu X, Lv M, Hu L (2010) Preparation and structure of fluorinated/non-fluorinated polyacrylate gradient emulsion blend film. Mater Lett 64:2091–2093

    Google Scholar 

  45. Chen Y, Cheng S, Wang Y (2006) Chemical components and properties of cor-shell acrylate latex containing fluorine in the shell and their films. J Appl Polym Sci 99:107–114

    Google Scholar 

  46. Peng S, Zhao L, Wu L (2007) Surface properties of fluorinated acrylate polymer latex. Acta Phys Chim Sin 23:531–536

    Google Scholar 

  47. Chen Y, Zhang C, Chen X (2006) Emulsifier-free latex of fluorinated acrylate copolymer. Eur Polym J 42:694–701

    Google Scholar 

  48. Huang P, Chao Y, Liao Y (2007) Enhancement of water repellency durability of the fabrics treated by fluorinated nanocopolymer emulsions. J Appl Polym Sci 104:2451–2457

    Google Scholar 

  49. Ma J, Lu J, Bao Y (2012) Preparation and properties of functionalized fluorine-containing acrylate copolymer. J Funct Mater 43:1336–1340

    Google Scholar 

  50. Park IJ, Lee SB, Choi CK (1998) Surface properties of the fluorine-containing graft copolymer of poly((perfluoroalkyl)ethyl methacrylate)-g-poly(methyl methacrylate). Macromolecules 31:7555–7558

    Google Scholar 

  51. Guo T, Tang D, Song M, Zhang B (2007) Copolymerizations of butyl methacrylate and fluorinated methacrylates via RAFT miniemulsion polymerization. J Polym Sci, Part A 45:5067–5075

    Google Scholar 

  52. Chen L, Wu F (2011) Effect of different surfactants on colloidal and polymer properties of fluorinated acrylate latex. J Saudi Chem Soc. doi:10.1016/j.jscs.2011.10.025

    Google Scholar 

  53. Yang W, Chen Y, Han D, Zhu L (2013) Synthesis and characterization of the fluorinated acrylic latex: effect of fluorine-containing surfactant on properties of the latex film. J Fluor Chem 149:8–12

    Google Scholar 

  54. Chen L, Shi H, Wu H, Xiang J (2010) Study on the double fluorinated modification of the acrylate latex. Colloids Surf A 368:148–153

    Google Scholar 

  55. Marion P, Beinert G, Juhueı D, Lang J (1997) Core-shell latex particles containing a fluorinated polymer in the shell. 2. Internal structure studied by fluorescence nonradiative energy transfer. Macromolecules 30:123–129

    Google Scholar 

  56. Ito F, Ma G, Nagai M, Omi S (2003) Study on preparation of irregular shaped particle in seeded emulsion polymerization accompanied with regulated electrostatic coagulation by counter-ion species. Colloids Surf A 216:109–122

    Google Scholar 

  57. Richar RT, Douglas RA, William FG, Michael JD, Bryan BS, Katherine MS, Dennis GS (1997) Preparation and surface properties of acrylic polymers containing fluoined monomers. Macromolecules 30:2883–2890

    Google Scholar 

  58. Cheng S, Chen Y, Chen Z (2002) Core–shell latex fluorinated polymer rich in shell. J Appl Polym Sci 85:1147–1153

    Google Scholar 

  59. Xiao X, Liu J (2008) Synthesis and characterization of fluorine-containing polyacrylate emulsion with core-shell structure. Chinese J Chem Eng 16:626–630

    Google Scholar 

  60. Thomas RR, Glaspey DF, DuBois DC, Kirchner JR, Anton DR, Lloyd KG, Stika KM (2000) Solution properties of partially fluorinated unsaturated esters and surface properties of polyester coatings containing partially fluorinated unsaturated esters as cross-linkers. Langmuir 16:6898–6905

    Google Scholar 

  61. Xiang M, Li X, Ober CK, Char K, Genzer J, Sivaniah E, Kramer EJ, Fischer DA (2006) Surface stability in liquid-crystalline block copolymers with semifluorinated monodendron side groups. Macromolecules 33:6106–6119

    Google Scholar 

  62. Schmidt DL, Brady RF, Lam K, Schmidt DC, Chaudhury MK (2004) Contact angle hysteresis, adhesion, and marine biofouling. Langmuir 20:2830–2836

    Google Scholar 

  63. Cheng X, Chen Z, Shi T, Wang H (2007) Synthesis and characterization of core-shell LIPN-fluorine-containing polyacrylate latex. Colloids Surf A 292:119–124

    Google Scholar 

  64. Cui X, Zhong S, Gao Y, Wang H (2008) Preparation and characterization of emulsifier-free core–shell interpenetrating polymer network-fluorinated polyacrylate latex particles. Colloids Surf A 324:14–21

    Google Scholar 

  65. Cui X, Zhong S, Wang H (2007) Emulsifier-free core-shell polyacrylate latex nanoparticles containing fluorine and silicon in shell. Polymer 48:7241–7248

    Google Scholar 

  66. Zhang Q, Zhan X, Chen F (2007) Miniemulsion polymerization of a fluorinated acrylate copolymer: kinetic studies and nanolatex morphology characterization. J Appl Polym Sci 104:641–647

    Google Scholar 

  67. Xie K, Hou A, Shi Y (2008) Synthesis of fluorine-containing acrylate copolymer and application as resins on dyed polyester microfiber fabric. J Appl Polym Sci 108:1778–1782

    Google Scholar 

  68. Zhang S, Zhao J, Chu G, Zhang L, Xu A, Li H, Geng B (2011) Synthesis, characterization and properties of a novel fluorinated methacrylate polymer. J Fluor Chem 132:915–919

    Google Scholar 

  69. Xiao X, Wang Y (2009) Emulsion copolymerization of fluorinated acrylate in the presence of a polymerizable emulsifier. Colloids Surf A 348:151–156

    Google Scholar 

  70. Xu W, An Q, Hao L, Zhang D, Zhang M (2013) Synthesis and characterization of self-crosslinking fluorinated polyacrylate soap-free latices with core–shell structure. Appl Surf Sci 268:373–380

    Google Scholar 

  71. Zhou J, Zhang L, Ma J (2013) Fluorinated polyacrylate emulsifier-free emulsion mediated by poly(acrylic acid)-b-poly(hexafluorobutyl acrylate) trithiocarbonate via ab initio RAFT emulsion polymerization. Chem Eng J 223:8–17

    Google Scholar 

  72. Adams J, Hardin A, Vounatsos F (2006) Microwave-assisted synthesis of new polysubstituted dienaminoesters and their cyclization to 3-bromo-2(1H)-pyridinones. J Org Chem 71:9895–9898

    Google Scholar 

  73. Samaroo D, Soll CE, Todaro LJ, Drain CM (2006) Efficient microwave-assisted synthesis of amine-substituted tetrakis(pentafluorophenyl)porphyrin. Org Lett 8:4985–4988

    Google Scholar 

  74. Bremner WS, Organ MG (2007) Multicomponent Reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. J Comb Chem 9:14–16

    Google Scholar 

  75. Xiong S, Guo X, Li L, Wu S, Chu P, Xu Z (2010) Preparation and characterization of fluorinated acrylate copolymer latexes by miniemulsion polymerization under microwave irradiation. J Fluor Chem 131:417–425

    Google Scholar 

  76. Li J, Wang Q, Su C, Chen Q (2007) Preparation and characterization of fluorine-containing acrylate copolymers by 60Co γ-ray radiation co-polymerization. Eur Polym J 43:2928–2934

    Google Scholar 

  77. Chen Z, Cui X, Jiang W, Cheng X, Wang H (2006) Synthesis and characterization of fluoropolymer modified polyacrylate in emulsion polymerization. J Appl Polym Sci 99:558–562

    Google Scholar 

  78. Yilmaz O, Cheaburu CN, Durraccio D, Gulumser G, Vasile C (2010) Preparation of stable acrylate/montmorillonite nanocomposite latex via in situ batch emulsion polymerization: effect of clay types. Appl Clay Sci 49:288–297

    Google Scholar 

  79. Bonnefond A, Paulis M, Leiza JR (2011) Kinetics of the emulsion copolymerization of MMA/BA in the presence of sodium montmorillonite. Appl Clay Sci 51:110–116

    Google Scholar 

  80. Hub C, Harton SE, Hunt MA, Fink R, Ade H (2007) Influence of sample preparation and processing on observed glass transition temperatures of polymer nanocomposites. J Polym Sci, Part B 45:2270–2276

    Google Scholar 

  81. Li B, Zhang S, Xu Q, Wang B (2009) Preparation of composite polyacrylate latex particles with in situ-formed methylsilsesquioxane cores. Polym Adv Technol 20:1190–1194

    Google Scholar 

  82. Jiang L, Pan K, Dan Y (2006) Synthesis and characterization of well-defined poly(methyl methacrylate)/CaCO3/SiO2 three-component composite particles via reverse atom transfer radical polymerization. Colloid Polym Sci 285:65–74

    Google Scholar 

  83. Burunkova JA, Denisyuk IY, Semina SA (2011) Self-organization of ZnO nanoparticles on UV-curable acrylate nanocomposites J Nanotechnol 1–6

  84. Liu H, Ye H, Lin T, Zhou T (2008) Synthesis and characterization of PMMA/Al2O3 composite particles by in situ emulsion polymerization. Particuology 6:207–213

    Google Scholar 

  85. Song X, Zhao Y, Wang H, Do Q (2009) Fabrication of polymer microspheres using titania as a photocatalyst and pickering stabilizer. Langmuir 25:4443–4449

    Google Scholar 

  86. Ma J, Zhang Z, Liu L, Hu J (2006) Application of acrylic resin coating agent modified by nano SiO2. J Soc Leather Technol Chem 90:188–192

    Google Scholar 

  87. Ma J, Hu J, Zhang Z (2006) The acrylic resin leather coating agent modified by nano-SiO2. J Compos Mater 40:2189–2201

    Google Scholar 

  88. Ma J, Hu J, Yang Z, Liu L (2007) Preparation of acrylic resin/modified nano-SiO2 via sol-gel method for leather finishing agent. J Sol–Gel Sci Technol 41:209–216

    Google Scholar 

  89. Ma J, Hu J, Yang Z (2007) Preparation of acrylic resin/nano-SiO2 for leather finishing agent. Mater Manuf Process 22:782–786

    Google Scholar 

  90. Liu J, Ma J, Bao Y, Zhu Z, Zhang J, Ma Y (2011) Effect of long-chain acrylate on the properties of polyacrylate/nano-SiO2 composite leather finishing agent. Polym-Plast Technol Eng 50:1546–1551

    Google Scholar 

  91. Ma J, Hu J, Zhang Z (2007) Polyacrylate/silica nanocomposite materials prepared by sol–gel process. Eur Polym J 43:4169–4177

    Google Scholar 

  92. Hu J, Ma J, Deng W (2008) Properties of acrylic resin/nano-SiO2 leather finishing agent prepared via emulsifier-free emulsion polymerization. Mater Lett 62:2931–2934

    Google Scholar 

  93. Huang S, Chin W, Yang W (2004) Viscosity, particle size distribution, and structural investigation of tetramethyloxysilane/2-hydroxyethyl methacrylate sols during the sol–gel process with acid and base catalysts. J Polym Sci, Part B 42:3476–3486

    Google Scholar 

  94. Ni K, Shan G, Weng Z (2005) Synthesis of hybrid core − shell nanoparticles by emulsion (co)polymerization of styrene and γ-methacryloxypropyltrimethoxysilane. Macromolecules 38:7321–7329

    Google Scholar 

  95. Watanabe M, Tamai T (2007) Sol − gel reaction in acrylic polymer emulsions: the effect of particle surface charge. Langmuir 23:3062–3066

    Google Scholar 

  96. Tong X, Tang T, Zhu N, Feng Z, Huang B (2002) Preparation of polymer/silica nanoscale hybrids through sol-gel method involving emulsion polymers(PMMA/SiO2). Chem J Chin Univ 23:306–309

    Google Scholar 

  97. Tong X, Tang T, Zhang Q, Feng Z, Huang B (2002) Polymer/silica nanoscale hybrids through sol–gel method involving emulsion polymers. I. Morphology of poly(butyl methacrylate)/SiO2. J Appl Polym Sci 83:46–54

    Google Scholar 

  98. Tong X, Tang T, Feng Z, Huang B (2002) Preparation of polymer/silica nanoscale hybrids through sol-gel method involving emulsion polymers. II. Poly(ethyl acrylate)/SiO2. J Appl Polym Sci 86:3532–3536

    Google Scholar 

  99. Chang C, Oyang T, Hwang F, Chen C, Cheng L (2012) Preparation of polymer/silica hybrid hard coatings with enhanced hydrophobicity on plastic substrates. J Non-Cryst Solids 358:72–76

    Google Scholar 

  100. Hashemi-Nasab R, Mirabedini SM (2013) Effect of silica nanoparticles surface treatment on in situ polymerization of styrene–butyl acrylate latex. Prog Org Coat 76:1016–1023

    Google Scholar 

  101. Liao W, Teng H, Qu J, Masuda T (2011) Fabrication of chemically bonded polyacrylate/silica hybrid films with high silicon contents by the sol–gel method. Prog Org Coat 71:376–383

    Google Scholar 

  102. Bourgeat-Lami E, Farzi GA, David L, Putaux JL, McKenna TFL (2012) Silica encapsulation by miniemulsion polymerization: distribution and localization of the silica particles in droplets and latex particles. Langmuir 28:6021–6031

    Google Scholar 

  103. Bao Y, Yang Y, Ma J (2013) Fabrication of monodisperse hollow silica spheres and effect on water vapor permeability of polyacrylate membrane. J Colloid Interf Sci 407:155–163

    Google Scholar 

  104. Zhang Y, Lv F, Ke S, Yu L, Huang H, Chan HLW (2011) Effect of hollow structure and covalent bonding on the mechanical properties of core–shell silica nanoparticles modified poly(methyl acrylate) composites. Mater Chem Phys 129:77–82

    Google Scholar 

  105. Cui X, Zhong S, Yan J, Wang C, Zhang H, Wang H (2010) Synthesis and characterization of core–shell SiO2-fluorinated polyacrylate nanocomposite latex particles containing fluorine in the shell. Colloids Surf A 360:41–46

    Google Scholar 

  106. Qu A, Wen X, Pi P, Cheng J, Yang Z (2008) Synthesis of composite particles through emulsion polymerization based on silica/fluoroacrylate-siloxane using anionic reactive and nonionic surfactants. J Colloid Interf Sci 317:62–69

    Google Scholar 

  107. Qu A, Wen X, Pi P, Cheng J, Yang Z (2009) Gradient distribution of fluorine on the film surface of the organic–inorganic hybrid fluoropolymer. Colloids Surf A 345:18–25

    Google Scholar 

  108. Qian SW, Wang JF, Wu WJ (2008) Synthesis and superhydrophobic characteristics of coating with nanostructure. J Funct Mater 39:2053–2056

    Google Scholar 

  109. He L, Liang JY (2008) Synthesis, modification and characterization of core–shell fluoroacrylate copolymer latexes. J Fluor Chem 129:590–597

    Google Scholar 

  110. Yao L, Yang T, Cheng S (2008) Study of nano-silica/fluorinated acrylate copolymer hybrid emulsion and the polymerization kinetics. Acta Polym Sin 3:221–230

    Google Scholar 

  111. Qu A, Wen X, Pi P, Cheng J, Yang Z (2009) Gradient distribution of fluorine on the film surface of the organic–inorganic hybrid fluoropolymer. Colloids Surf A 345:18–25

    Google Scholar 

  112. Qu A, Wen X, Pi P, Cheng J, Yang Z (2008) Synthesis of composite particles through emulsion polymerization based on silica/fluoroacrylate-siloxane using anionic reactive and nonionic surfactants. J Colloid Interf Sci 317:62–69

    Google Scholar 

  113. Qu A, Wen X, Pi P, Cheng J, Yang Z (2007) Preparation of hybrid film with superhydrophobic surfaces based on irregularly structure by emulsion polymerization. Appl Surf Sci 253:9430–9434

    Google Scholar 

  114. Zhao F, Zeng X, Li H, Zhang J (2012) Preparation and characterization of nano-SiO2/fluorinated polyacrylate composite latex via nano-SiO2/acrylate dispersion. Colloids Surf A 396:328–335

    Google Scholar 

  115. Maji PK, Guchhait PK, Bhowmick AK (2009) Effect of nanoclays on physico-mechanical properties and adhesion of polyester-based polyurethane nanocomposites: structure–property correlation. J Mater Sci 44:5861–5871. doi:10.1007/s10853-009-3827-7

    Google Scholar 

  116. Herrera-Alonso JM, Sedlakova Z, Marand E (2010) Gas transport properties of polyacrylate/clay nanocomposites prepared via emulsion polymerization. J Membr Sci 363:48–56

    Google Scholar 

  117. Yılmaz O, Cheaburu CN, Gulumserv G, Vasile C (2012) On the stability and properties of the polyacrylate/Na-MMT nanocomposite obtained by seeded emulsion polymerization. Eur Polym J 48:1683–1695

    Google Scholar 

  118. Diaconu G, Paulis M, Leiza JR (2008) Towards the synthesis of high solids content waterborne poly(methyl methacrylate-co-butyl acrylate)/montmorillonite nanocomposites. Polymer 49:2444–2454

    Google Scholar 

  119. Diaconu G, Paulis M, Leiza JR (2008) High solids content waterborne acrylic/montmorillonite nanocomposites by miniemulsion polymerization. Macromol React Eng 2:80–89

    Google Scholar 

  120. Diaconu G, Micusık M, Bonnefond A, Paulis M, Leiza JR (2009) Macroinitiator and macromonomer modified montmorillonite for the synthesis of acrylic/MMT nanocomposite latexes. Macromolecules 42:3316–3325

    Google Scholar 

  121. Liufu S, Xiao H, Li Y (2005) Thermal analysis and degradation mechanism of polyacrylate/ZnO nanocomposites. Polym Degrad Stabil 87:103–110

    Google Scholar 

  122. Liao WJ, Gu AJ, Liang GZ, Yuan L (2012) New high performance transparent UV-curable poly(methyl methacrylate) grafted ZnO/silicone-acrylate resin composites with simultaneously improved integrated performance[J]. Colloids Surf A 396:74–82

    Google Scholar 

  123. Li M, Li G, Jiang J, Zhang ZS, Dai X, Mai KC (2015) Ultraviolet resistance and antimicrobial properties of ZnO in the polypropylene materials: a review. J Mater Sci Technol 31:331–339

    Google Scholar 

  124. Ma J, Liu J, Bao Y, Zhu Z, Wang X, Zhang J (2013) Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property. Ceram Int 39:2803–2810

    Google Scholar 

  125. Liu J, Ma J, Bao Y, Zhu Z, Liu Y, Zheng Y (2011) Preparation of polyacrylate/ZnO Nanocomposite. Mater Sci Forum 694:430–434

    Google Scholar 

  126. Damodar RA, You SJ, Chou HH (2009) Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J Hazard Mater 172:1321–1328

    Google Scholar 

  127. Mai FD, Lee WLW, Chang JL, Liu SC, Wu CW, Chen CC (2010) Fabrication of porous TiO2 film on Ti foil by hydrothermal process and its photocatalytic efficiency and mechanisms with ethyl violet dye. J Hazard Mater 177:864–875

    Google Scholar 

  128. Cappelletti G, Ardizzone S, Bianchi CL (2009) Photodegradation of pollutants in air: enhanced properties of nano-TiO2 prepared by ultrasound. Nano Res Lett 4:97–105

    Google Scholar 

  129. Jiang X, Tian X, Gu J, Huang D, Yang Y (2011) Cotton fabric coated with nano TiO2-acrylate copolymer for photocatalytic self-cleaning by in situ suspension polymerization. Appl Surf Sci 257:8451–8456

    Google Scholar 

  130. Chen Y, Lin A, Gan F (2006) Improvement of polyacrylate coating by filling modified nano-TiO2. Appl Surf Sci 252:8635–8640

    Google Scholar 

  131. Liu J, Ma J, Bao Y, Zhu Z (2012) Preparation and performance of polyacrylate/nano-TiO2 composite. J Funct Mater 43:209–212

    Google Scholar 

  132. Flores-Velez LM, Dominguez O (2002) Characterization and properties of portland cement composites incorporating zinc-iron oxide nanoparticles. J Mater Sci 37:983–988. doi:10.1023/A:1014304131987

    Google Scholar 

  133. Jayaramanavar P, Paramsothy M, Balaji A, Gupta M (2010) Tailoring the tensile/compressive response of magnesium alloy ZK60A using Al2O3 nanoparticles. J Mater Sci 45:1170–1178. doi:10.1007/s10853-009-4059-6

    Google Scholar 

  134. Xu K, Zhou SX, Wu LM (2009) Effect of highly dispersible zirconia nanoparticles on the properties of UV-curable poly(urethane-acrylate) coatings. J Mater Sci 44:1613–1621. doi:10.1007/s10853-008-3231-8

    Google Scholar 

  135. Ma X, Zhou B, Sheng Y, Wang C, Pan Y, Ma S, Gao Y, Wang Z (2007) Preparation of calcium carbonate/poly(methyl methacrylate) composite microspheres by soapless emulsion polymerization. J Appl Polym Sci 105:2925–2929

    Google Scholar 

  136. Gumfekar SP, Kunte KJ, Ramjee L, Kate KH, Sonawane SH (2011) Synthesis of CaCO3–P(MMA–BA) nanocomposite and its application in water based alkyd emulsion coating. Prog Org Coat 72:632–637

    Google Scholar 

  137. Antonietti M, Shen Y, Nakanishi T, Manuelian M, Campbell R, Gwee L, Elabd YA, Tambe N, Crombez R, Texter J (2010) Single-wall carbon nanotube latexes. J ACS Appl Mater Interf 2:649–653

    Google Scholar 

  138. Mechrez G, Suckeveriene RY, Zelikman E, Rosen J, Ariel-Sternberg N, Cohen R, Narkis M, Segal E (2012) Highly-tunable polymer/carbon nanotubes systems: preserving dispersion architecture in solid composites via rapid microfiltration. ACS Macro Lett 1:848–852

    Google Scholar 

  139. Bao Y, Yang YQ, Ma JZ (2013) Fabrication of monodisperse hollow silica spheres and effect on water vapor permeability of polyacrylate membrane. J Colloid Interface Sci 407:155–163

    Google Scholar 

  140. Bao Y, Yang YQ, Shi CH, Ma JZ (2014) Fabrication of hollow silica spheres and their application in polyacrylate film forming agent. J Mater Sci 49:8215–8225. doi:10.1007/s10853-014-8530-7

    Google Scholar 

  141. Gandhi RR, Gowri S, Suresh J, Sundrarajan M (2013) Ionic liquids assisted synthesis of ZnO nanostructures: controlled size, morphology and antibacterial properties. J Mater Sci Technol 29:533–538

    Google Scholar 

  142. Chien WC, Yu YY, Chen PK (2011) Microwave-assisted synthesis and characterization of poly(acrylic)/SiO2-TiO2 core-shell nanoparticle hybrid thin films. Thin Solid Films 519:5274–5279

    Google Scholar 

Download references

Acknowledgements

The authors thank for the supports from the Program for New Century Excellent Talents in University (No: NCET-13-0885), National Natural Science Foundation of China (No: 21376145), and Key Scientific Research Group of Shaanxi province (No: 2013KCT-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Ma, J., Zhang, X. et al. Recent advances in the modification of polyacrylate latexes. J Mater Sci 50, 6839–6863 (2015). https://doi.org/10.1007/s10853-015-9311-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9311-7

Keywords

Navigation