Skip to main content
Log in

Nanofurry magnetic carbon microspheres for separation processes and catalysis: synthesis, phase composition, and properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new method is developed to synthesize magnetic carbon microspheres decorated with carbon nanofibers and iron nanoparticles (nanofurry microspheres) for separation techniques in chemistry and biology. Microspheres are synthesized by carbonizing polystyrene–divinylbenzene-based, iron-loaded ion exchange resins. The phase composition, magnetic properties, and surface area and morphology of these materials are characterized by various techniques. It is detected that superparamagnetic (SPM) magnetite is present in microspheres exclusively upon carbonization at 400–500 °C, elemental iron, both α- and γ-Fe, is the major component at 600 °C, and cementite dominates between 700 and 1000 °C. Nanofiber formation is observed to be pronounced at high temperatures. The synthesized carbon microspheres have high surface area (100–300 m2 g−1) and can be separated easily by a magnet or by filtration. Saturation magnetization of selected samples is obtained between 5 and 28 emu g−1, depending on the phase composition. The novel microcomposites are expected to be effective adsorbents or support materials in various chemical processes, for example in water and air cleaning, catalysis, and biotechnological separations. Preliminary experimental studies for Cr(VI) removal from water and for platinum deposition are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Inagaki M, Kang F, Toyoda M, Konno H (2013) Advanced materials science and engineering of carbon. Elsevier, Amsterdam

    Google Scholar 

  2. Tascón JMD (2012) Novel carbon adsorbents. Elsevier, Amsterdam

    Google Scholar 

  3. Bottani EJ, Tascón JMD (2008) Adsorption by carbons. Elsevier, Amsterdam

    Google Scholar 

  4. Bradley RH (2011) Recent developments in the physical adsorption of toxic organic vapors by activated carbons. Adsorpt Sci Technol 29:1–28

    Article  Google Scholar 

  5. Bandos TJ (2006) Activated carbon surfaces in environmental remediation. Elsevier, Amsterdam

    Google Scholar 

  6. Serp P, Figueiredo JL (2009) Carbon materials for catalysis. Wiley, Hoboken

    Google Scholar 

  7. Schaetz A, Zeltner M, Stark WJ (2012) Carbon modifications and surfaces for catalytic organic transformations. ACS Catal 2:1267–1284

    Article  Google Scholar 

  8. Donnet JB, Bansal RC, Wang MJ (1993) Carbon black: science and technology, 2nd edn. CRC Press, New York

    Google Scholar 

  9. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Article  Google Scholar 

  10. Dresselhaus MS, Dresselhaus G, Avouris P (2001) carbon nanotubes, synthesis, structure, properties, and applications. Springer, Berlin

    Google Scholar 

  11. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  Google Scholar 

  12. Paradise M, Goswami T (2007) Carbon nanotubes—production and industrial applications. Mater Des 28:1477–1489

    Article  Google Scholar 

  13. Planeix JM, Coustel N, Coq B, Brotons V, Kumbhar PS, Dutartre R, Geneste P, Bernier P, Ajayan PM (1994) Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc 116:7935–7936

    Article  Google Scholar 

  14. Rodriguez NM, Kim MS, Baker RTK (1994) Carbon nanofibers: a unique catalyst support medium. J Phys Chem 98:13108–13111

    Article  Google Scholar 

  15. Hoenlein W, Kreupl F, Duesberg GS, Graham AP, Liebau M, Seidel RV (2004) Carbon nanotube applications in microelectronics. IEEE Trans Compon Packag Technol 27:629–634

    Article  Google Scholar 

  16. Gruner G (2006) carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 384:322–335

    Article  Google Scholar 

  17. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353

    Article  Google Scholar 

  18. Ünal H, Niazi JH (2013) Carbon nanotube decorated magnetic microspheres as an affinity matrix for biomolecules. J Mater Chem B 1:1894–1902

    Article  Google Scholar 

  19. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342

    Article  Google Scholar 

  20. Liu Y, Yan H (2011) Carbon microspheres with embedded magnetic iron oxide nanoparticles. Mater Lett 65:1063–1065

    Article  Google Scholar 

  21. Sakata Y, Muto A, Azhar Uddin Md, Tanihara M, Harino K, Takada J, Kusano Y (1998) Preparation of porous carbon composite with highly dispersed ultra fine metal compound from metal ion exchanged resin—hardness and magnetic properties. J Jpn Soc Powder Powder Metall 45:807–814

    Article  Google Scholar 

  22. Zhu Y, Zhang L, Schappacher FM, Pöttgen R, Shi J, Kaskel S (2008) Synthesis of magnetically separable porous carbon microspheres and their adsorption properties of phenol and nitrobenzene from aqueous solution. J Phys Chem C 112:8623–8628

    Article  Google Scholar 

  23. Krishnan R, Jerin J, Manoj B (2013) Raman spectroscopy investigation of camphor soot: spectral analysis and structural information. Int J Electrochem Sci 8:9421–9428

    Google Scholar 

  24. Zhu J, Gu H, Guo J, Chen M, Wei H, Luo Z, Colorado HA, Yerra N, Ding D, Ho TC et al (2014) Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr(VI) removal. J Mater Chem A 2:2256–2265

    Article  Google Scholar 

  25. Qui B, Wang Y, Sun D, Wang Q, Zhang X, Weeks BL, O’Connor R, Huang X, Wei S, Guo Z (2015) Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures. J Mater Chem A 3:9817–9825

    Article  Google Scholar 

  26. Zhu J, Gu H, Rapole SB, Luo Z, Pallavkar S, Haldolaarachchige N, Benson TJ, Ho TC, Hopper J, Young DP et al (2012) Looped carbon capturing and environmental remediation: case study of magnetic polypropylene nanocomposites. RSC Adv 2:4844–4856

    Article  Google Scholar 

  27. Zhu J, Wei S, Gu H, Rapole SB, Wang Q, Luo Z, Haldolaarachchige N, Young DP, Guo Z (2012) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46:977–985

    Article  Google Scholar 

  28. Garg UK, Kaur MP, Garg VK, Sud D (2007) Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J Hazard Mater 140:60–68

    Article  Google Scholar 

  29. El Nemr A (2009) Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: kinetic and isotherm studies. J Hazard Mater 161:132–141

    Article  Google Scholar 

  30. El-Sikaily A, El Nemr A, Khaled A, Abdelwehab O (2007) Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J Hazard Mater 148:216–228

    Article  Google Scholar 

  31. Ho YS, McKay G, Wase DAJ, Forster CF (2000) Study of the sorption of divalent metal ions on to peat. Adsorpt Sci Technol 18:639–650

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Zsuzsanna Czégény, Gábor Varga, and Ödön Wagner for their assistance in TG, SEM, and UV spectroscopic investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Pasinszki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 21559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasinszki, T., Krebsz, M., Kótai, L. et al. Nanofurry magnetic carbon microspheres for separation processes and catalysis: synthesis, phase composition, and properties. J Mater Sci 50, 7353–7363 (2015). https://doi.org/10.1007/s10853-015-9292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9292-6

Keywords

Navigation