Skip to main content
Log in

A comparative analysis of solubility, segregation, and phase formation in atomized and cryomilled Al–Fe alloy powders

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bulk nanostructured and ultrafine-grained binary Al–Fe alloys have been studied in the past for their remarkable strength, hardness, and thermal stability. These properties have been attributed to a combination of solid solution strengthening, precipitate strengthening, and grain boundary strengthening. However, to date, no systematic investigation has been performed to address the factors that govern the evolution of the various metastable and equilibrium precipitates that form as a result of thermal exposure. In this study, Al–2at.%Fe and Al–5at.%Fe powders were synthesized via helium gas atomization and argon gas atomization, respectively. Cooling rates upwards of 106 K s−1 were achieved resulting in an intermetallic-free starting structure, and a map of the structure as a function of cooling rate was established. Electron backscatter diffraction analysis revealed the presence of a larger number of low-angle grain boundaries relative to high-angle grain boundaries, which influenced nucleation and precipitation of the metastable Al6Fe phase. Cryomilling of the atomized powder was subsequently performed, which led to grain refinement into the nanometer regime, dispersion of the Fe-containing phases, and forcing of 2at.%Fe into solution within the Al matrix compared to negligible Fe in solution in the as-atomized state. Finally, differential scanning calorimetry was utilized to elucidate the metastable Al6Fe precipitation temperature (~300 °C) and subsequent phase transformation to the equilibrium Al13Fe4 phase (~400 °C). An activation energy analysis utilizing the Kissinger method revealed three important factors, in order of importance, for ease of Al6Fe precipitation: segregated regions containing iron, availability of nucleation sites, and the number of diffusion pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Belov NA, Aksenov AA, Eskin DG (2002) Iron in aluminum alloys: impurity and alloying element. CRC Press, Boca Raton

    Google Scholar 

  2. Jones H (1969) Observations on a structural transition in aluminium alloys hardened by rapid solidification. Mater Sci Eng 5:1–18. doi:10.1016/0025-5416(69)90077-9

    Article  Google Scholar 

  3. Sasaki TT, Ohkubo T, Hono K (2009) Microstructure and mechanical properties of bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater 57:3529–3538. doi:10.1016/j.actamat.2009.04.012

    Article  Google Scholar 

  4. Tonejc A (1971) X-ray study of the decomposition of metastable Al-rich Al–Fe solid solutions. Metall Trans 2:437–440. doi:10.1007/BF02663331

    Article  Google Scholar 

  5. Nayak SS, Wollgarten M, Banhart J et al (2010) Nanocomposites and an extremely hard nanocrystalline intermetallic of Al–Fe alloys prepared by mechanical alloying. Mater Sci Eng, A 527:2370–2378. doi:10.1016/j.msea.2009.12.044

    Article  Google Scholar 

  6. Kim DH, Cantor B (1994) Structure and decomposition behaviour of rapidly solidified Al-Fe alloys. J Mater Sci 29:2884–2892. doi:10.1007/BF01117597

    Article  Google Scholar 

  7. Cantor B, Cahn RW (1976) Precipitation of equilibrium phases in vapour-quenched Al–Ni, Al–Cu, and Al–Fe alloys. J Mater Sci 11:1066–1076. doi:10.1007/BF00553114

    Article  Google Scholar 

  8. Liu W, Yang J, Xiao B (2009) Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. J Hazard Mater 161:474–478. doi:10.1016/j.jhazmat.2008.03.122

    Article  Google Scholar 

  9. Sasaki H, Kita K, Nagahora J, Inoue A (2001) Nano-metals I. nanostructures and mechanical properties of bulk Al–Fe Alloys prepared by electron-beam deposition. Mater Trans 42:1561–1565. doi:10.2320/matertrans.42.1561

    Article  Google Scholar 

  10. Mukhopadhyay DK, Suryanarayana C, Froes FH (1995) Structural evolution in mechanically alloyed Al–Fe powders. Metall Mater Trans A 26:1939–1946. doi:10.1007/BF02670665

    Article  Google Scholar 

  11. Cubero-Sesin JM, Horita Z (2012) Mechanical properties and microstructures of Al–Fe alloys processed by high-pressure torsion. Metall Mater Trans A 43:5182–5192. doi:10.1007/s11661-012-1341-z

    Article  Google Scholar 

  12. Fadeeva VI, Leonov AV (1992) Formation of Al–Fe supersaturated solid solution by mechanical alloying. Mater Sci Forum 88:481–488

    Article  Google Scholar 

  13. Fadeeva VI, Leonov AV, Khodina LN (1995) Metastable phases in mechanically alloyed Al–Fe system. Mater Sci Forum 179:397–402

    Article  Google Scholar 

  14. Zheng B, Lin Y, Zhou Y, Lavernia EJ (2009) Gas atomization of amorphous aluminum powder: part II experimental investigation. Metall Mater Trans B 40:995–1004. doi:10.1007/s11663-009-9277-4

    Article  Google Scholar 

  15. Lu L (1997) Mechanical alloying. Springer, Berlin

    Google Scholar 

  16. Kissinger H (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bureau Stand 57:217–221

    Article  Google Scholar 

  17. Boettinger WJ, Bendersky L, Early JG (1986) An analysis of the microstructure of rapidly solidified Al-8 wt pct Fe powder. MTA 17:781–790. doi:10.1007/BF02643853

    Article  Google Scholar 

  18. Roy B (2002) Fundamentals of Classical and Statistical Thermodynamics. Wiley, West Sussex

    Google Scholar 

  19. Forsythe W (1954) Smithsonian physical tables, 9th edn, vol 120. Smithsonian Institution, Washington

    Google Scholar 

  20. Lu H, Sivaprasad P, Davies CHJ (2003) Treatment of misorientation data to determine the fraction of recrystallized grains in a partially recrystallized metal. Mater Charact 51:293–300. doi:10.1016/j.matchar.2004.01.005

    Article  Google Scholar 

  21. Tarasiuk J, Gerber P, Bacroix B (2002) Estimation of recrystallized volume fraction from EBSD data. Acta Mater 50:1467–1477. doi:10.1016/S1359-6454(02)00005-8

    Article  Google Scholar 

  22. Sun Y, Kulkarni K, Sachdev AK, Lavernia EJ (2014) Synthesis of gamma-TiAl by reactive spark sintering of cryomilled Ti and Al powder blend, part 1: influence of processing and microstructural evolution. Metall Mater Trans A 45A:2750–2758

    Article  Google Scholar 

  23. Koch CC (1993) The Synthesis and structure of nanocrystalline materials produced by mechanical attrition: a review. Nanostruct Mater 2:109–129

    Article  Google Scholar 

  24. Suryanarayana C, Grant Norton M (1998) X-ray diffraction: a practical approach. Plenum Press, New York

    Book  Google Scholar 

  25. Witkin DB, Lavernia EJ (2006) Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51:1–60. doi:10.1016/j.pmatsci.2005.04.004

    Article  Google Scholar 

  26. Han BQ, Zhang Z, Lavernia EJ et al (2004) Mechanical behavior of a cryomilled nanostructured Al-7.5 pct Mg alloy. Metall Mater Trans A 35:947–949. doi:10.1007/s11661-004-0019-6

    Article  Google Scholar 

  27. Anderson JD (2003) Modern compressible flow, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  28. Dykhuizen RC, Smith MF (1998) Gas dynamic principles of cold spray. J Therm Spray Tech 7:205–212. doi:10.1361/105996398770350945

    Article  Google Scholar 

  29. Hughes IR, Jones H (1976) Coupled eutectic growth in Al-Fe alloys. J Mater Sci 11:1781–1793. doi:10.1007/BF00708256

    Article  Google Scholar 

  30. Adam CM, Hogan LM (1975) Crystallography of the Al–Al3 Fe eutectic. Acta Metall 23:345–354. doi:10.1016/0001-6160(75)90127-3

    Article  Google Scholar 

  31. Cardoso K, Escorial AG, Lieblich M, Botta FW (2001) Amorphous and nanostructured Al–Fe–Nd powders obtained by gas atomization. Mater Sci Eng, A 315:89–97. doi:10.1016/S0921-5093(01)01197-2

    Article  Google Scholar 

  32. Groza JR, Shackelford JF, Lavernia EJ, Powers MT (2007) Materials processing handbook. CRC Press, Boca Raton

    Google Scholar 

  33. Lavernia EJ, Wu Y (1996) Spray atomization and deposition. Wiley, West Sussex

    Google Scholar 

  34. Pickens JR (1981) Aluminium powder metallurgy technology for high-strength applications. J Mater Sci 16:1437–1457. doi:10.1007/BF00553958

    Article  Google Scholar 

  35. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184. doi:10.1016/S0079-6425(99)00010-9

    Article  Google Scholar 

  36. Lavernia EJ, Han BQ, Schoenung JM (2008) Cryomilled nanostructured materials: processing and properties. Mater Sci Eng, A 493:207–214. doi:10.1016/j.msea.2007.06.099

    Article  Google Scholar 

  37. Mohamed FA (2003) A dislocation model for the minimum grain size obtainable by milling. Acta Mater 51:4107–4119. doi:10.1016/S1359-6454(03)00230-1

    Article  Google Scholar 

  38. Hohne G, Hemminger WF, Flammersheim H-J (2003) Differential scanning calorimetry, 2nd edn. Springer, New York

    Book  Google Scholar 

  39. Tonejc A (1971) X-ray study of the decomposition of metastable Al-rich Al–Fe solid solutions. Metall Trans 2:437–440. doi:10.1007/BF02663331

    Article  Google Scholar 

  40. DE Laughlin, Hono K (2014) Physical metallurgy, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  41. Callister WD Jr (2007) Materials science and engineering an introduction, 7th edn. Wiley, New York

    Google Scholar 

  42. Porter DA, Easterling KE, Sherif MY (2009) Phase transformations in metals and alloys, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  43. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Pergamon, Oxford

    Google Scholar 

  44. Hashemi-Sadraei L, Mousavi SE, Vogt R et al (2012) Influence of nitrogen content on thermal stability and grain growth kinetics of cryomilled Al nanocomposites. Metall Mater Trans A 43:747–756. doi:10.1007/s11661-011-0882-x

    Article  Google Scholar 

  45. Li Y, Liu W, Ortalan V et al (2010) HRTEM and EELS study of aluminum nitride in nanostructured Al 5083/B4C processed via cryomilling. Acta Mater 58:1732–1740. doi:10.1016/j.actamat.2009.11.015

    Article  Google Scholar 

  46. Ye J, Han BQ, Schoenung JM (2006) Mechanical behaviour of an Al–matrix composite reinforced with nanocrystalline Al-coated B4C particulates. Philos Mag Lett 86:721–732. doi:10.1080/09500830600986109

    Article  Google Scholar 

  47. Shabashov VA, Brodova IG, Mukoseev AG et al (2007) Deformation-induced phase transformations in the Al–Fe system under intensive plastic deformation. J Phys: Condens Matter 19:386222. doi:10.1088/0953-8984/19/38/386222

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge helpful EBSD discussions with Scott Sitzman of Oxford Instruments. Dr. Baolong Zheng of UC Davis is thanked for assistance with gas atomization experiments. The assistance with cryomilling by Hanry Yang is greatly appreciated. The authors would like to acknowledge financial support provided by the Office of Naval Research (Grant No. ONR N00014-12-1-0237) with Dr. Lawrence Kabacoff as the program officer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie M. Schoenung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saller, B.D., Hu, T., Ma, K. et al. A comparative analysis of solubility, segregation, and phase formation in atomized and cryomilled Al–Fe alloy powders. J Mater Sci 50, 4683–4697 (2015). https://doi.org/10.1007/s10853-015-9019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9019-8

Keywords

Navigation