Skip to main content
Log in

MnO2-Modified Ba(Ti,Zr)O3 Ceramics with High Q m and Good Thermal Stability

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

MnO2-modified Ba(Ti0.9625Zr0.0375)O3 ceramics have been prepared by the conventional solid-state reaction technique at different sintering temperatures. Room-temperature piezoelectric properties, thermal stability, and crystalline structures were investigated. It was found that both the MnO2 additive and sintering temperature significantly influence the piezoelectric properties of the MnO2-modified Ba(Ti0.9625Zr0.0375)O3 ceramics. The sample sintered at 1400°C exhibited the best room-temperature piezoelectric properties of Q m = 1907, d 33 = 205 pC/N, and k p = 40.5% with tan δ = 0.46%, and its k p remains larger than 35% in the broad temperature range from −38°C to 65°C. The results indicate that MnO2-modified Ba(Ti0.9625Zr0.0375)O3 ceramics are promising lead-free materials for frequency device and power device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (London: Academic, 1971).

    Google Scholar 

  2. H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, and S. Tsurekawa, Jpn. J. Appl. Phys. 45, L30–L32 (2006).

    Article  CAS  Google Scholar 

  3. T. Karaki, K. Yan, T. Miyamoto, and M. Adachi, Jpn. J. Appl. Phys. 46, L97–L98 (2007).

    Article  CAS  Google Scholar 

  4. S. Wada, K. Takeda, T. Muraishi, H. Kakemoto, T. Tsurumi, and T. Kimura, Jpn. J. Appl. Phys. 46, 7039–7043 (2007).

    Article  CAS  Google Scholar 

  5. W.F. Liu and X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009).

    Article  Google Scholar 

  6. S. Shao, J. Zhang, Z. Zhang, P. Zheng, M. Zhao, J. Li, and C. Wang, J. Phys. D Appl. Phys. 41, 125408 (2008).

    Article  Google Scholar 

  7. P. Zheng, J.L. Zhang, S.F. Shao, Y.Q. Tan, and C.L. Wang, Appl. Phys. Lett. 94, 032902 (2009).

    Article  Google Scholar 

  8. J. Zhang, Z. Zhang, S. Shao, P. Zheng, and C. Wang, J. Adv. Dielectr. 1, 79–84 (2011).

    Article  CAS  Google Scholar 

  9. C. Ciomaga, M. Viviani, M.T. Buscaglia, V. Buscaglia, L. Mitoseriu, A. Stancu, and P. Nanni, J. Eur. Ceram. Soc. 27, 4061–4064 (2007).

    Article  CAS  Google Scholar 

  10. N. Nanakorn, P. Jalupoom, N. Vaneesorn, and A. Thanaboonsombut, Ceram. Int. 34, 779–782 (2008).

    Article  CAS  Google Scholar 

  11. Y.G. Lv, C.L. Wang, J.L. Zhang, M.L. Zhao, M.K. Li, and H.C. Wang, Mater. Lett. 62, 3425–3427 (2008).

    Article  CAS  Google Scholar 

  12. G.C. Jiao, H.Q. Fan, L.J. Liu, and W. Wang, Mater. Lett. 61, 4185–4187 (2007).

    Article  CAS  Google Scholar 

  13. M.R. Yang, C.C. Tsai, C.S. Hong, S.Y. Chu, and S.L. Yang, J. Appl. Phys. 108, 094103 (2010).

    Article  Google Scholar 

  14. D. Lin, K.W. Kwok, and H.L.W. Chan, J. Phys. D Appl. Phys. 41, 045401 (2008).

    Article  Google Scholar 

  15. C. Galassi, E. Roncari, C. Capiani, and F. Craciun, J. Eur. Ceram. Soc. 19, 1237–1241 (1999).

    Article  CAS  Google Scholar 

  16. C.-C. Tsai, T.-K. Chiang, and S.-Y. Chu, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 156–166 (2009).

    Article  Google Scholar 

  17. D. Berlincourt, Ultrasonic Transducer Materials: Piezoelectric Crystals and Ceramics, ed. O.E. Mattiat (London: Plenum, 1971),

    Google Scholar 

  18. A.B. Don and K. Frank, J. Acoust. Soc. Am. 24, 709–713 (1952).

    Article  Google Scholar 

  19. S.-E. Park, S. Wada, L.E. Cross, and T.R. Shrout, J. Appl. Phys. 86, 2746–2750 (1999).

    Article  CAS  Google Scholar 

  20. P.W. Rehrig, S.-E. Park, S. Trolier-McKinstry, G.L. Messing, B. Jones, and T.R. Shrout, J. Appl. Phys. 86, 1657–1661 (1999).

    Article  CAS  Google Scholar 

  21. Y. Zhi, A. Chen, G. Ruyan, and A.S. Bhalla, J. Appl. Phys. 92, 1489–1493 (2002).

    Article  Google Scholar 

  22. Y. Zhi, G. Ruyan, and A.S. Bhalla, J. Appl. Phys. 88, 410–415 (2000).

    Article  Google Scholar 

  23. L. Wu, C–.C. Wei, T.-S. Wu, and H.-C. Liu, J. Phys. C: Solid State Phys. 16, 2813–2821 (1983).

    Article  CAS  Google Scholar 

  24. R. Gerson, J. Appl. Phys. 31, 188–194 (1960).

    Article  CAS  Google Scholar 

  25. L. Arunachalam, D. Chakravorty, and E. Subbarao, Bull. Mater. Sci. 9, 159–168 (1987).

    Article  CAS  Google Scholar 

  26. L.X. Zhang and X. Ren, Phys. Rev. B 71, 174108 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, P., Zhang, J.L., Qin, H.B. et al. MnO2-Modified Ba(Ti,Zr)O3 Ceramics with High Q m and Good Thermal Stability. J. Electron. Mater. 42, 1154–1157 (2013). https://doi.org/10.1007/s11664-013-2543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2543-x

Keywords

Navigation