Skip to main content
Log in

In-chain multi-functionalized random butadiene–styrene copolymer via anionic copolymerization with 1,1-bis(4-dimethylaminophenyl)ethylene: synthesis and its application as a rubber matrix of carbon black-based composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In-chain multi-functionalized random butadiene–styrene copolymer possessing definite dimethylamino groups along the polymer backbone, poly(butadiene-co-styrene-co-1,1-bis(4-dimethylaminophenyl)ethylene) (poly(Bd-co-St-co-BDADPE)), has been designed and synthesized via living anionic copolymerization of excess BDADPE with butadiene and styrene in benzene at 50 °C, using sec-butyllithium as initiator. The incorporation of BDADPE unit results in increases both in glass transition temperature and thermal decomposition temperature of the terpolymers. Such multiple dimethylamino groups along the rubber backbone effectively improve the dispersity of carbon black (CB) in the corresponding composites, as verified by scanning electronic microscopy observation. Also the tensile strength, elongation at break and the value of dynamic loss coefficient at 0 °C of the CB/poly(Bd-co-St-co-BDADPE) vulcanized composites, are significantly enhanced. This in-chain multi-functionalization of matrix rubber via anionic copolymerization employing BDADPE as copolymerizable monomer, provides a facile and effective method to prepare CB-based rubber composites with improved tensile strength and elongation at break, as well as good wet skid resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Athreya SR, Kalaitzidou K, Das S (2011) Mechanical and microstructural properties of Nylon-12/carbon black composites: selective laser sintering versus melt compounding and injection molding. Compos Sci Technol 71:506–510

    Article  Google Scholar 

  2. Nakano H, Shimizu K, Takahashi S et al (2012) Resistivity–temperature characteristics of filler-dispersed polymer composites. Polymer 53:6112–6117

    Article  Google Scholar 

  3. Hauptman N, Žveglič M, Maček M et al (2009) Carbon based conductive photoresist. J Mater Sci 44:4625–4632. doi:10.1007/s10853-009-3706-2

    Article  Google Scholar 

  4. Chuang WJ, Chiu WY, Tai HJ (2012) Temperature-dependent conductive composites: poly(N-isopropylacrylamide-co-N-methylol acrylamide) and carbon black composite films. J Mater Chem 22:20311–20318

    Article  Google Scholar 

  5. Li QY, Ma YL, Wu CF et al (2008) Effect of carbon black nature on vulcanization and mechanical properties of rubber. J Macromol Sci B 47:837–846

    Article  Google Scholar 

  6. Tang WH, Liu BB, Liu ZW et al (2012) Processing-dependent high impact polystyrene/styrene–butadiene–styrene tri-block copolymer/carbon black antistatic composites. J Appl Polym Sci 123:1032–1039

    Article  Google Scholar 

  7. Le HH, Kolesov I, Ali Z et al (2010) Effect of filler dispersion degree on the Joule heating stimulated recovery behaviour of nanocomposites. J Mater Sci 45:5851–5859. doi:10.1007/s10853-010-4661-7

    Article  Google Scholar 

  8. Feller JF, Langevin D, Marais S (2004) Influence of processing conditions on sensitivity of conductive polymer composites to organic solvent vapours. Synth Met 144:81–88

    Article  Google Scholar 

  9. Roy N, Sengupta R, Bhowmick AK (2012) Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 37:781–819

    Article  Google Scholar 

  10. Malas A, Das CK (2013) Selective dispersion of different organoclays in styrene butadiene rubber in the presence of a compatibilizer. Mater Des 49:857–865

    Article  Google Scholar 

  11. Strååt M, Boldizar A, Rigdahl M et al (2011) Improvement of melt spinning properties and conductivity of immiscible polypropylene/polystyrene blends containing carbon black by addition of styrene–ethylene–butadiene–styrene block copolymer. Polym Eng Sci 51:1165–1169

    Article  Google Scholar 

  12. Manna AK, Bhattacharyya AK, De PP et al (1999) Effect of surface oxidation of filler and silane coupling agent on the chemorheological behavior of epoxidized natural rubber filled with ISAF carbon black. J Appl Polym Sci 71:557–563

    Article  Google Scholar 

  13. Bandyopadhyay S, De PP, Tripathy DK et al (1997) Effect of (3-aminopropyl)triethoxysilane on chemorheological behavior of carboxylated nitrile rubber in presence of surface oxidized ISAF carbon black. J Appl Polym Sci 63:1833–1839

    Article  Google Scholar 

  14. Jong L (2008) Dynamic mechanical properties of styrene–butadiene composites reinforced by defatted soy flour and carbon black co-filler. J Appl Polym Sci 108:65–75

    Article  Google Scholar 

  15. Wu LL, Wang YS, Wang YR et al (2013) In-chain multi-functionalized polystyrene by living anionic copolymerization with 1,1-bis(4-methylaminophenyl)ethylene: synthesis and effect on the dispersity of carbon black in polymer-based composites. Polymer 54:2958–2965

    Article  Google Scholar 

  16. Grosch KA (1996) The rolling resistance, wear and traction properties of tread compounds. Rubber Chem Technol 69:495–568

    Article  Google Scholar 

  17. Quirk RP, Zhu LF (1990) Anionic synthesis of dimethylamino-functionalized polystyrenes and poly(methyl methacrylates) using 1-(4-dimethylaminophenyl)-1-phenylethylene. Br Polym J 23:47–54

    Article  Google Scholar 

  18. Pispas S, Floudas G, Hadjichristidis N (1999) Microphase separation in ABC block copolymers with a short but strongly interacting middle block. Macromolecules 32:9074–9077

    Article  Google Scholar 

  19. Hayashi M (2004) Design and synthesis of functionalized styrene–butadiene copolymers by means of living anionic polymerization. Macromol Symp 215:29–40

    Article  Google Scholar 

  20. Oshima M, Mabe S, Inagaki K (2004) Process for producing modified polymer rubber. Sumitomo Chemical Co. US Patent 6 818 710 B2

  21. Kim J, Kwak S, Kim KU et al (1998) Synthesis of a diphenylethylene derivative carrying aromatic tertiary amine groups and its use in chain end functionalization of alkyllithium-initiated polymerizations. Macromol Chem Phys 199:2185–2191

    Article  Google Scholar 

  22. Lee KY, Lee BJ (2000) Process for preparing styrene–butadiene rubber or butadiene rubber by solution polymerization. Hankook Tire Co. US Patent 6 133 388

    Google Scholar 

  23. Hirao A, Karasawa Y, Higashihara T et al (2004) Synthesis of block co-polymers and star-branched polymers consisting of conducing polyacetylene segments via ionic interaction to form ionic bonds. Des Monomers Polym 7:647–660

    Article  Google Scholar 

  24. Summers GJ, Ndawuni MP, Summers CA (2012) α-Bis and α, ω-tetrakis(4-dimethylaminophenyl) functionalized polymers by atom transfer radical polymerization using 1,1-bis[(4-dimethylamino)phenyl]ethylene as tertiary diamine initiator precursor and functionalizing agent. Polym Int 61:1353–1361

    Article  Google Scholar 

  25. Pispas S, Hadjichristidis N (2000) Block copolymers with zwitterionic groups at specific sites: synthesis and aggregation behavior in dilute solutions. J Polym Sci A 38:3791–3801

    Article  Google Scholar 

  26. Floudas G, Pispas S, Hadjichristidis N et al (2001) Effect of zwitterions substitution on the structure and dynamics of asymmetrically substituted polystyrene-block-polyisoprene diblock and triblock copolymers. Macromol Chem Phys 202:1488–1496

    Article  Google Scholar 

  27. Quirk RP, Zhu LF (1992) In-chain functionalization by alternating anionic copolymerization of styrene and 1-(4-dimethylaminophenyl)-1-phenylethylene. Polym Int 27:1–6

    Article  Google Scholar 

  28. Quirk RP, Kuang JX (1994) Anionic synthesis of in-chain 3° amine-functionalized polybutadienes. Macromol Symp 85:267–277

    Article  Google Scholar 

  29. Wu LL, Ma HW, Lu XY et al (2014) Synthesis and thermal analysis of in-chain multi-functionalized polybutadiene using 1,1-bis(4-dimethylaminophenyl)ethylene. J Macromol Sci A 51:27–32

    Article  Google Scholar 

  30. Passaglia E, Donati F (2007) Functionalization of a styrene/butadiene random copolymer by radical addition of l-cysteine derivatives. Polymer 48:35–42

    Article  Google Scholar 

  31. Soliman EM, Kandil UF, Taha MMR (2012) The significance of carbon nanotubes on styrene butadiene rubber (SBR) and SBR modified mortar. Mater Struct 45:803–816

    Article  Google Scholar 

  32. Martinez-Estrada A, Chavez-Castellanos AE, Herrera-Alonso M et al (2010) Comparative study of the effect of sulfur on the morphology and rheological properties of SB- and SBS-modified asphalt. J Appl Polym Sci 115:3409–3422

    Article  Google Scholar 

  33. Zanchet A, Carli LN, Giovanela M et al (2012) Use of styrene butadiene rubber industrial waste devulcanized by microwave in rubber composites for automotive application. Mater Des 39:437–443

    Article  Google Scholar 

  34. Gilman H, Cartledge FK (1964) The analysis of organolithium compounds. J Organomet Chem 2:447–454

    Article  Google Scholar 

  35. Choi SS, Kim IS (2002) Filler–polymer interactions in filled polybutadiene compounds. Eur Polym J 38:1265–1269

    Article  Google Scholar 

  36. Yuki H, Hotta J, Okamoto Y et al (1967) Anionic copolymerization of styrene and 1,1-diphenylethylene. Bull Chem Soc Jpn 40:2659–2663

    Article  Google Scholar 

  37. Zhou JP (2001) Controlled synthesis of SBR elastomers. PhD Dissertation, University of Akron

  38. Godard P, Bomal Y, Biebuyck JJ (1993) Influence of interactions on the tensile behavior of polystyrene filled with calcium-carbonate. J Mater Sci 28:6605–6610. doi:10.1007/BF00356403

    Article  Google Scholar 

  39. Medalia AI (1978) Effect of carbon-black on dynamic properties of rubber vulcanizates. Rubber Chem Technol 51:437–523

    Article  Google Scholar 

  40. Bhattacharya M, Bhowmick AK (2010) Synergy in carbon black-filled natural rubber nanocomposites. Part I: Mechanical, dynamic mechanical properties, and morphology. J Mater Sci 45:6126–6138. doi:10.1007/s10853-010-4699-6

    Article  Google Scholar 

  41. Zhang J, Wang JL, Wu YQ et al (2009) Evaluation of the improved properties of SBR/weathered coal modified bitumen containing carbon black. Constr Build Mater 23:2678–2687

    Article  Google Scholar 

  42. Gopi JA, Patel SK, Chandra AK et al (2011) SBR–clay–carbon black hybrid nanocomposites for tire tread application. J Polym Res 18:1625–1634

    Article  Google Scholar 

  43. Wang MJ, Morris MD (2008) Recent developments in fillers for tire applications: current topics in elastomers research. CRC Press, Boca Raton, pp 935–953

    Google Scholar 

  44. Peng M, Zhou MX, Jin ZJ et al (2010) Effect of surface modifications of carbon black (CB) on the properties of CB/polyurethane foams. J Mater Sci 45:1065–1073. doi:10.1007/s10853-009-4043-1

    Article  Google Scholar 

  45. Vadlamani VK, Chalivendra VB, Shukla A et al (2012) Sensing of damage in carbon nanotubes and carbon black-embedded epoxy under tensile loading. Polym Compos 33:1809–1815

    Article  Google Scholar 

  46. Ding J, Li Y, Shen KH et al (2012) Anionic synthesis of binary random in-chain multi-functionalized poly(styrene/butadiene/isoprene and dimethyl [4-phenylvinyl-phenyl]silane) (PS-DPESiH, PB-DPESiH, PI-DPESiH) copolymers. Chin Chem Lett 23:749–752

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (NSFC 21034001) and the National Key Technologies R&D Program of China (2013BAH03B01) for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Ma, H., Wang, Q. et al. In-chain multi-functionalized random butadiene–styrene copolymer via anionic copolymerization with 1,1-bis(4-dimethylaminophenyl)ethylene: synthesis and its application as a rubber matrix of carbon black-based composite. J Mater Sci 49, 5171–5181 (2014). https://doi.org/10.1007/s10853-014-8225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8225-0

Keywords

Navigation