Skip to main content
Log in

Epoxidation Functionalized Isobutylene Isoprene Rubber toward Green-curing Pathway and High-performance Composites

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Epoxidation of the carbon-carbon double bonds on unsaturated rubber macromolecules can produce novel modified rubber species with special properties, and construct eco-friendly crosslinking pathway via the reaction of epoxide groups to solve the problems brought by conventional sulfur vulcanization system. In this contribution, a novel modified product of isobutylene isoprene rubber (IIR), epoxy-functionalized IIR (EIIR) was successfully prepared by in situ epoxidation technique for the first time, and the crosslinking of EIIR was achieved by the reaction of oxirane groups with maleic anhydride (MAH) without additional additives. The reaction conditions for preparing EIIR were optimized through systematic research on the epoxidation process. Under optimal condition, the degree of epoxidation of the rubber reached around 99% without side reactions. The obtained EIIR/carbon black composites cured by MAH had excellent mechanical properties comparable to those of IIR composites. More importantly, compared with IIR composites, the air-tightness of the EIIR composites was improved by about 50%, and the flexural fatigue life of first-level cracks and sixth-level cracks was increased by several times. The significant improvement of these properties is of great significance for the application safety and energy saving of IIR materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Coran, A. Y. Vulcanization. Sci. Technol. Rubber. Academic Press. 1994, DOI: https://doi.org/10.1016/b978-0-08-051667-7.50012-3

  2. Roy, K.; Alam, M. N.; Mandal, S. K.; Debnath, S. C. Sol-gel derived nano zinc oxide for the reduction of zinc oxide level in natural rubber compounds. J. Sol-Gel Sci. Technol. 2014, 70, 378–384.

    Article  CAS  Google Scholar 

  3. Mostoni, S.; Milana, P.; Credico, B. D.; D’Arienzo, M.; Scotti, R. Zinc-based curing activators: new trends for reducing zinc content in rubber vulcanization process. Catalysts. 2019, 9, 664.

    Article  Google Scholar 

  4. Lin, T. F.; Zhang, X. H.; Tang, Z. H.; Guo, B. C. Renewable conjugated acids as curatives for high-performance rubber/silica composites. Green Chem. 2015, 17, 3301–3305.

    Article  CAS  Google Scholar 

  5. Hansson, C. Allergic contact dermatitis from (N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine and from compounds in polymerized 2,2,4-trimethyl-1, 2-dihydroquinoline. Contact Dermatitis. 1994, 30, 114–115.

    Article  CAS  PubMed  Google Scholar 

  6. Kroft, E. B. M.; Van Der Valk, P. G. M. Occupational contact dermatitis of both hands because of sensitization of black rubber. Contact Dermatitis. 2008, 58, 125–126.

    Article  PubMed  Google Scholar 

  7. Yamano, T.; Shimizu, M. Skin sensitization potency and cross-reactivity of p-phenylenediamine and its derivatives evaluated by non-radioactive murine local lymph node assay and guinea-pig maximization test. Contact Dermatitis. 2009, 60, 193–198.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, G. G.; Zhou, X. X.; Zhang, Q. L. Editorial corner-a personal view Current issues for rubber crosslinking and its future trends of green chemistry strategy. Express Polym. Lett. 2019, 13, 406–406.

    Article  Google Scholar 

  9. Naskar, K. Thermoplastic elastomers based on PP/EPDM blends by dynamic vulcanization. Rubber Chem. Technol. 2007, 80, 504–519.

    Article  CAS  Google Scholar 

  10. Zhang, X. H.; Tang, Z. H.; Guo, B. C. Regulation of mechanical properties of diene rubber cured by oxa-Michael Reaction via manipulating network structure. Polymer. 2018, 144, 57–64.

    Article  CAS  Google Scholar 

  11. Zhang, G. G.; Feng, H.; Liang, K.; Wang, Z.; Li, X. L.; Zhou, X. X.; Guo, B. C.; Zhang, L. Q. Design of next-generation cross-linking structure for elastomers toward green process and a real recycling loop. Sci. Bull. 2020, 65, 889–898.

    Article  CAS  Google Scholar 

  12. Feng, H. R.; Tian, C.; Zhang, G. G.; Zhang, L. Q. Catalyst-free curing and closed-loop recycling of carboxylated functionalized rubber by a green crosslinking strategy. Polymer 2021, 234, 124237–124247.

    Article  CAS  Google Scholar 

  13. Pire, M.; Norvez, S.; Iliopoulos, I.; Rossignol, B. L.; Leibler, L. Epoxidized natural rubber/dicarboxylic acid self-vulcanized blends. Polymer 2010, 51, 5903–5909.

    Article  CAS  Google Scholar 

  14. Zhang, G. G.; Zhou, X. X.; Liang, K.; Guo, B. C.; Li, X. L.; Wang, Z.; Zhang, L. Q. Mechanically robust and recyclable EPDM rubber composites by a green cross-linking strategy. ACS Sustainable Chem. Eng. 2019, 7, 11712–11720.

    Article  CAS  Google Scholar 

  15. Pire, M.; Norvez, S.; Iliopoulos, I.; Rossignol, B. L.; Leibler, L. Imidazole-promoted acceleration of crosslinking in epoxidized natural rubber/dicarboxylic acid blends. Polymer 2011, 52, 5243–5249.

    Article  CAS  Google Scholar 

  16. Pire, M.; Lorthioir, C.; Oikonomou, E. K.; Norvez, S.; Iliopoulos, I.; Rossignol, B. L.; Leibler, L. Imidazole-accelerated crosslinking of epoxidized natural rubber by dicarboxylic acids: a mechanistic investigation using NMR spectroscopy. Polym. Chem. 2012, 3, 946–953.

    Article  CAS  Google Scholar 

  17. Pire, M.; Norvez, S.; Iliopoulos, I.; Rossignol, B. L.; Leibler, L. Dicarboxylic acids may compete with standard vulcanization processes for crosslinking epoxidised natural rubber. Compos. Interface 2014, 21, 45–50.

    Article  CAS  Google Scholar 

  18. Algaily, B.; Kaewsakul, W.; Sarkawi, S. S.; Kalkornsurapranee, E. Enabling reprocessability of ENR-based vulcanisates by thermochemically exchangeable ester crosslinks. Plast. Rubber Compos. 2021, 50, 315–328.

    Article  CAS  Google Scholar 

  19. Chilkoor, G.; Sarder, R.; Islam, J.; ArunKumar, K. E.; Ratnayake, I. Maleic anhydride-functionalized graphene nanofillers render epoxy coatings highly resistant to corrosion and microbial attack. Carbon. 2020, 159, 586–597.

    Article  CAS  Google Scholar 

  20. Espana, J. M.; Sánchez-Nacher, L.; Boronat, T.; Fombuena, V.; Balart, R. Properties of biobased epoxy resins from epoxidized soybean oil (ESBO) cured with maleic anhydride (MA). J. Am. Oil Chem. Soc. 2012, 89, 2067–2075.

    Article  CAS  Google Scholar 

  21. Kolář, F.; Svítilová, J. Kinetics and mechanism of curing epoxy/anhydride systems. Acta Geodyn. Geomater. 2007, 4, 85–92.

    Google Scholar 

  22. Srirachya, N.; Kobayashi, T.; Boonkerd, K. An alternative crosslinking of epoxidized natural rubber with maleic anhydride. Key Eng. Mater. 2017, 748, 84–90.

    Article  Google Scholar 

  23. Zhang, G. G.; Liang, K.; Feng, H. R.; Pang, J. X.; Liu, N. Q.; Li, X. L. Design of epoxy-functionalized styrene-butadiene rubber with bio-based dicarboxylic acid as a cross-linker toward the green-curing process and recyclability. Ind. Eng. Chem. Res. 2020, 59, 10447–10456.

    Article  CAS  Google Scholar 

  24. Yang, C. L.; Li, T.; Li, Z. P. Effect of heating on properties of ENR. China Rubber Ind. 2002, 49, 400–402.

    CAS  Google Scholar 

  25. Liu, Y. J.; Tang, Z. H.; Wu, S. W.; Guo, B. C. Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers. ACS Macro Lett. 2019, 8, 193–199.

    Article  CAS  PubMed  Google Scholar 

  26. Tang, Z. H.; Liu, Y. J.; Guo, B. C.; Zhang, L. Q. Malleable, mechanically strong, and adaptive elastomers enabled by interfacial exchangeable bonds. Macromolecules. 2017, 50, 7584–7592.

    Article  CAS  Google Scholar 

  27. Cao, L. M.; Fan, J. F.; Huang, J. R.; Chen, Y. K. A robust and stretchable cross-linked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds. J. Mater. Chem. A 2019, DOI: https://doi.org/10.1039/C8TA11587G

  28. Zhu, Y.; Gao, J. L.; Zhang, L. J.; Peng, Y.; Wang, H.; Ling, F. W.; Huang, G. S.; Wu, J. R. An interfacial dynamic crosslinking approach toward catalyst-free and mechanically robust elastomeric vitrimer with a segregated structure. Chinese J. Polym. Sci. 2021, 39, 201–210.

    Article  CAS  Google Scholar 

  29. Tanrattanakul, V.; Wattanathai, B.; Tiangjunya, A.; Muhamud, P. In situ epoxidized natural rubber: improved oil resistance of natural rubber. J. Appl. Polym. Sci. 2003, 90, 261–269.

    Article  CAS  Google Scholar 

  30. Pu, L.; Zhang, R.; Zhu, Y. Development and optimization of epoxidation process for natural rubber. Yunnan Chem. Technol. 2021, 48, 46–49.

    Google Scholar 

  31. Li, C. B.; Wang, H.; Feng, Z.; Yang, S. T. Preparation and characterization of epoxidized natural rubber by in-situ method. New Chem. Mater. 2012, 40, 124–126+130.

    Google Scholar 

  32. Puskas, J. E.; Wilds, C. Kinetics of the epoxidation of butyl rubber; development of a high precision analytical method for unsaturation measurement. Rubber Chem. Technol. 1994, 67, 329–341.

    Article  CAS  Google Scholar 

  33. Wu, J.; Cui, B. C.; Wang, Y.; Shi, Y.; Ren, X. B.; Xu, H. D.; Liu, Z. X.; Hao, F. L.; Zhang, L. Q. Synthesis and characterization of epoxidized butyl rubber. Acta Polymerica Sinica (in Chinese) 2022, 53, 185–192.

    CAS  Google Scholar 

  34. Wang, Y. M.; Cao, R. W.; Wang, M. H.; Liu, X. M.; Zhao, X. Y.; Lu, Y. L.; Feng, A. C.; Zhang, L. Q. Design and synthesis of phenyl silicone rubber with functional epoxy groups through anionic copolymerization and subsequent epoxidation. Polymer 2020, 186, 122077–12084.

    Article  CAS  Google Scholar 

  35. James, A. P.; Johnstone, R. A. W.; McCarron, M.; Sankey, J. P.; Trenbirth, B. 5-Hydroperoxycarbonylphthalimide: a new reagent for epoxidation. Chem. Commun. 1998, 429–430.

  36. Zhang, X.; Niu, K. J.; Song, W. X.; Yan, S. K.; Zhao, X. Y.; Lu, Y. L.; Zhang, L. Q. The effect of epoxidation on strain-induced crystallization of epoxidized natural rubber. Macromol. Rapid Commun. 2019, 40, 1900042–1900046.

    Article  Google Scholar 

  37. Roy, S.; Gupta, B. R.; Maiti, B. R. Effect of acid concentration and other reaction parameters on epoxidation of natural rubber latex. Ind. Eng. Chem. Res. 1991, 30, 2573–2576.

    Article  CAS  Google Scholar 

  38. Jacobi, M. M.; Santin, C. K.; Alegre, M.; Schuster, R. H. Study of the epoxidation of polydiene rubbers I. Influence of the microstructure on the epoxidation of SBR with performic acid. KGK-Kautsch. Gummi. Kunstst. 2002, 55, 590–595.

    CAS  Google Scholar 

  39. Chu, C. Y.; Vukov, R. Determination of the structure of butyl rubber by NMR spectroscopy. Macromolecules 1985, 18, 1423–1430.

    Article  CAS  Google Scholar 

  40. Jacobi, M. M.; Schneider, L. K.; Freitas, L. L.; Schuster, R. H. Properties and morphology of thermoplastic vulcanizates based on PP/SBR and PP/EpSBR. KGK-Kautsch. Gummi. Kunstst. 2006, 59, 49–54.

    CAS  Google Scholar 

  41. Johnson, T.; Thomas, S. Nitrogen/oxygen permeability of natural rubber, epoxidised natural rubber and natural rubber/epoxidised natural rubber blends. Polymer 1999, 40, 3223–3228.

    Article  CAS  Google Scholar 

  42. Li, Z. P.; Lan, J. Effects of epoxidation of natural rubber on its properties. Chinese J. Appl. Chem. 1996, 13, 49–51.

    CAS  Google Scholar 

  43. Zhao, X. Y.; Niu, K. J.; Xu, Y.; Peng, Z.; Jia, L.; Hui, D.; Zhang, L. Q. Morphology and performance of NR/NBR/ENR ternary rubber composites. Compos. PartB-Eng. 2016, 107, 106–112.

    Article  CAS  Google Scholar 

  44. Wang, Y. Y.; Shi, M. X.; Sun, Y.; Tie, W. Y.; Zhang, L. S. Production technology and market analysis of butyl rubber. China Elastomerics 2010, 20, 80–84.

    CAS  Google Scholar 

  45. Grubisic, V. Air tightness control of passenger car wheels. Engineering 2017, 9, 171–180.

    Article  CAS  Google Scholar 

  46. Roychoudhury, A.; De, P. P. Reinforcement of epoxidized natural rubber by carbon black: effect of surface oxidation of carbon black particles. J. Appl. Polym. Sci. 1993, 50, 181–186.

    Article  CAS  Google Scholar 

  47. Wang, M. J.; Wolff, S.; Donnet, J. B. Filler-elastomer interactions. Part III. Carbon-black-surface energies and interactions with elastomer analogs. Rubber Chem. Technol. 1991, 64, 714–736.

    Article  CAS  Google Scholar 

  48. Bradbury, J. H.; Perera, M. C. S. Epoxidation of natural rubber studied by NMR spectroscopy. J. Appl. Polym. Sci. 1985, 30, 3347–3364.

    Article  CAS  Google Scholar 

  49. Hamzah, R.; Bakar, M. A.; Khairuddean, M.; Mohammed, I. A.; Adnan, R. A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques. Molecules 2012, 17, 10974–10993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gan, S. N.; Hamid, Z. A. Partial conversion of epoxide groups to diols in epoxidized natural rubber. Polymer 1997, 38, 1953–1956.

    Article  CAS  Google Scholar 

  51. Dahham, O. S.; Hamzah, R.; Bakar, M. A.; Zulkepli, N. N.; Dahham, S. S.; Ting, S. S. NMR study of ring opening reaction of epoxidized natural rubber in presence of potassium hydroxide/isopropanol solution. Polym. Test. 2017, 59, 55–66.

    Article  CAS  Google Scholar 

  52. Vernekar, S. P.; Sabne, M. B.; Patil, S. D.; Patil, A. S.; Idage, S. B.; Avadhani, C. V.; Sivaram, S. Effect of latex concentration on epoxidation of natural rubber (NR) latex. J. Appl. Polym. Sci. 1992, 44, 2107–2114.

    Article  CAS  Google Scholar 

  53. Hashim, A. S.; Kohjiya, S. Preparation and properties of epoxidized natural rubber network crosslinked by ring opening reaction. Polym. Gels Networks 1994, 2, 219–227.

    Article  CAS  Google Scholar 

  54. Huang, C.; Ge, Z.; Zhao, B. B.; Wang, Z.; Luo, Y. J. Effects of DMP-30 on curing behavior of epoxy resin/maleicanhydride systems. J. Chem. Eng. Chinese Universities 2017, 31, 197–204.

    CAS  Google Scholar 

  55. Papirer, E.; Dentzer, J.; Li, S.; Donnet, J. B. Surface groups on nitric acid oxidized carbon black samples determined by chemical and thermodesorption analyses. Carbon 1991, 29, 69–72.

    Article  CAS  Google Scholar 

  56. Manna, A. K.; De, P. P.; Tripathy, D. K.; De, S. K. Chemical interaction between surface oxidized carbon black and epoxidized natural rubber. Rubber Chem. Technol. 1997, 70, 624–633.

    Article  CAS  Google Scholar 

  57. Menard, K. P.; Bilyeu, B. W., in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, John Wiley & Sons Ltd, New York, 2006, p. 16.

    Google Scholar 

  58. Tang, Z. H.; Wu, X. H.; Guo, B. C.; Zhang, L. Q.; Jia, D. Preparation of butadiene-styrene-vinyl pyridine rubber-graphene oxide hybrids through co-coagulation process and in situ interface tailoring. Mater. Chem. 2012, 22, 7492–7501.

    Article  CAS  Google Scholar 

  59. Qiao, H.; Wang, R. G.; Yao, H.; Zhou, X. X.; Lei, W. W.; Hu, X. R.; Zhang, L. Q. Preparation of graphene oxide/bio-based elastomer nanocomposites through polymer design and interface tailoring. Polym. Chem. 2015, 6, 6140–6151.

    Article  CAS  Google Scholar 

  60. Zheng, L.; Jerrams, S.; Su, T.; Xu, Z. C.; Zhang, L. Q.; Liu, L.; Wen, S.P. Enhanced covalent interface, crosslinked network and gas barrier property of functionalized graphene oxide/styrene-butadiene rubber composites triggered by thiol-ene click reaction. Compos. Part B-Eng. 2020, 197, 108186.

    Article  CAS  Google Scholar 

  61. Liu, W.; Lv, L. T.; Yang, Z. L.; Zheng, Y. Q.; Wang, H. The effect of OMMT on the properties of vehicle damping carbon black-natural rubber composites. Polymers 2020, 12, 1983–1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huneau, B.; Masquelier, I.; Marco, Y.; Saux, V. L.; Noizet, S.; Schiel, C.; Charrier, P. Fatigue crack initiation in a carbon black-filled natural rubber. Rubber Chem. Technol. 2016, 89, 126–141.

    Article  CAS  Google Scholar 

  63. Dong, B.; Zhang, L. Q.; Wu, Y. P. Influences of different dimensional carbon-based nanofillers on fracture and fatigue resistance of natural rubber composites. Polym. Test. 2017, 63, 281–288.

    Article  CAS  Google Scholar 

  64. Ishak, Z. A. M.; Bakar, A. A.; Ishiaku, U. S.; Hashim, A. S.; Azahari, B. An investigation of the potential of rice husk ash as a filler for epoxidized natural rubber—II. Fatigue behaviour. Eur. Polym. J. 1997, 33, 73–79.

    Article  CAS  Google Scholar 

  65. Ismail, H.; Jaffri, R. M.; Rozman, H. D. Oil palm wood flour filled natural rubber composites: fatigue and hysteresis behaviour. Polym. Int. 2000, 49, 618–622.

    Article  CAS  Google Scholar 

  66. Sun, Y. N.; Cheng, P. F.; Cui, B. P.; Sun, X. H. Effects of CB and curing degree on fatigue properties of NR vulcanizates. China Elastomerics 2017, 27, 34–38.

    Google Scholar 

  67. Wang, H.; Wei, Y. T.; Wang, J. Influencing factors and research methods of rubber material fatigue life. China Rubber Ind. 2020, 67, 723–735.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China, the National Natural Science Foundation of China (Nos. 2022YFB3704800, 2022YFB3704802 and 52273051) and the Fundamental Research Funds for the Central Universities (No. JD2221).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Shi or Li-Qun Zhang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Cui, BC., Zheng, HB. et al. Epoxidation Functionalized Isobutylene Isoprene Rubber toward Green-curing Pathway and High-performance Composites. Chin J Polym Sci 41, 1818–1828 (2023). https://doi.org/10.1007/s10118-023-2986-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2986-3

Keywords

Navigation