Skip to main content
Log in

Breakdown field enhancement of Si-based MOS capacitor by post-deposition annealing of the reactive sputtered ZrOxNy gate oxide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zirconium oxynitride (ZrOxNy) thin films were deposited on silicon (100) substrates by radio frequency-reactive magnetron sputtering in an argon–oxygen–nitrogen atmosphere. Post-deposition annealing (PDA) process was performed in argon ambient at various annealing temperatures (500, 600, 700 and 800 °C) for 15 min. Metal–oxide–semiconductor capacitors were then fabricated with aluminum as the gate electrode. The effects of PDA process on the thin film’s structural and electrical properties of the samples were investigated. The structural properties of the deposited films have been evaluated by atomic force microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. On the other hand, the electrical characterization of the film was conducted by current–voltage analysis. The Raman results revealed that (600–800 °C) annealed samples comprised of crystalline multiphase films (t-ZrO2, fcc-ZrN and bcc γ-Zr2ON2). Interfacial layer consisted of Zr–Si–O, Si–O–N and Si–O phase was formed for all investigated samples, and interfacial layer growth was suppressed when annealed at lower temperatures (500 °C). Electrical result revealed that the sample annealed at a relatively low temperature of 500 °C has demonstrated the highest breakdown field which was attributed to the low surface roughness, the low interface trap and the highly amorphous multiphase film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. De Almeida, I.J.R. Baumvol, Surf. Sci. Rep. 49, 1 (2003)

    Article  ADS  Google Scholar 

  2. R.E. Nieh, C.S. Kang, H.-J. Cho, K. Onishi, R. Choi, S. Krishnan, J.H. Han, Y.-H. Kim, M.S. Akbar, J.C. Lee, IEEE Trans. Electron Devices 50, 333 (2003)

    Article  ADS  Google Scholar 

  3. Y.H. Wong, K.Y. Cheong, J. Mater. Sci. Mater. Electron. 21, 980 (2010)

    Article  Google Scholar 

  4. Y.H. Wong, K.Y. Cheong, J. Alloys Compd. 509, 8728 (2011)

    Article  Google Scholar 

  5. L.-M. Chen, Y.-S. Lai, J. Chen, Thin Solid Films 515, 3724 (2007)

    Article  ADS  Google Scholar 

  6. J.-H. Huang, T.-H. Wu, G.-P. Yu, Surf. Coat. Technol. 203, 3491 (2009)

    Article  Google Scholar 

  7. W. Weinreich, V. Ignatova, L. Wilde, S. Teichert, M. Lemberger, A. Bauer, R. Reiche, E. Erben, J. Heitmann, L. Oberbeck, J. Appl. Phys. 106, 4107 (2009)

    Article  Google Scholar 

  8. M. Laurikaitis, J. Dudonis, D. Milčius, Thin Solid Films 516, 1549 (2008)

    Article  ADS  Google Scholar 

  9. Y.-M. Chen, B. Liao, X.-Y. Wu, H.-X. Zhang, X. Zhang, Surf. Coat. Technol. 228, S210 (2013)

    Article  Google Scholar 

  10. Y. Chen, H. Zhang, Z. Li, W. Cao, B. Liao, X. Zhang, Surf. Eng. 29, 567 (2013)

    Article  Google Scholar 

  11. P. Carvalho, J.-M. Chappé, L. Cunha, S. Lanceros-Méndez, P. Alpuim, F. Vaz, E. Alves, C. Rousselot, J. Espinós, A. González-Elipe, J. Appl. Phys. 103, 104907 (2008)

    Article  ADS  Google Scholar 

  12. S. Mohamed, A.A. El-Rahman, M.R. Ahmed, J. Phys. D Appl. Phys. 40, 7057 (2007)

    Article  ADS  Google Scholar 

  13. M.-H. Chan, P.-L. Wu, F.-H. Lu, Thin Solid Films 518, 7300 (2010)

    Article  ADS  Google Scholar 

  14. S.K. Rawal, A.K. Chawla, V. Chawla, R. Jayaganthan, R. Chandra, Mater. Sci. Eng. B 172, 259 (2010)

    Article  Google Scholar 

  15. A. Rizzo, M. Signore, L. Mirenghi, E. Piscopiello, L. Tapfer, J. Phys. D Appl. Phys. 42, 235401 (2009)

    Article  ADS  Google Scholar 

  16. J.-X. Chen, J.-P. Xu, L. Liu, P.-T. Lai, Appl. Phys. Express 6, 084202 (2013)

    Article  ADS  Google Scholar 

  17. Y.H. Wong, K.Y. Cheong, Ceram. Int. 39, S475 (2013)

    Article  Google Scholar 

  18. Y.H. Wong, K.Y. Cheong, J. Electrochem. Soc. 158, H1270 (2011)

    Article  Google Scholar 

  19. Y.H. Wong, V. Atuchin, V. Kruchinin, K.Y. Cheong, Appl. Phys. A 115, 1069 (2014)

    Article  ADS  Google Scholar 

  20. Y.-H. Wu, L.-L. Chen, J.-R. Wu, M.-L. Wu, C.-C. Lin, C.-H. Chang, IEEE Electron Device Lett. 31, 1008 (2010)

    Article  ADS  Google Scholar 

  21. S. Venkataraj, O. Kappertz, R. Jayavel, M. Wuttig, J. Appl. Phys. 92, 2461 (2002)

    Article  ADS  Google Scholar 

  22. S.K. Rawal, A.K. Chawla, R. Jayaganthan, R. Chandra, Mater. Sci. Eng. B 181, 16 (2014)

    Article  Google Scholar 

  23. S. Jeon, C.-J. Choi, T.-Y. Seong, H. Hwang, Appl. Phys. Lett. 79, 245 (2001)

    Article  ADS  Google Scholar 

  24. A. Rizzo, M. Signore, L. Mirenghi, T. Di Luccio, Thin Solid Films 517, 5956 (2009)

    Article  ADS  Google Scholar 

  25. Y.H. Wong, K.Y. Cheong, Nanoscale Res. Lett. 6, 1 (2011)

    Article  ADS  Google Scholar 

  26. P. Pankaew, T. Rattana, S. Chaiyakun, P. Limsuwan, P. Klumdoung, J. Appl. Sci. Res. 9, 6103 (2013)

    Google Scholar 

  27. L. Saci, R. Mahamdi, F. Mansour, P. Temple-Boyer, E. Scheid, Influence of the annealing condition on the BN bonds intensity detected by FTIR characterization, in: 2011 7th International Conference on Electrical and Electronics Engineering (ELECO) (IEEE, 2011), p. 2

  28. J. Chai, J. Pan, Z. Zhang, S. Wang, Q. Chen, C. Huan, Appl. Phys. Lett. 92, 092119 (2008)

    Article  ADS  Google Scholar 

  29. F.-H. Chen, M.-N. Hung, J.-F. Yang, S.-Y. Kuo, J.-L. Her, Y.H. Matsuda, T.-M. Pan, J. Phys. Chem. Solids 74, 570 (2013)

    Article  ADS  Google Scholar 

  30. T. Kurniawan, K.Y. Cheong, K.A. Razak, Z. Lockman, N. Ahmad, J. Mater. Sci. Mater. Electron. 22, 143 (2011)

    Article  Google Scholar 

  31. V.V. Atuchin, V.N. Kruchinin, Y.H. Wong, K.Y. Cheong, Mater. Lett. 105, 72–75 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by University of Malaya Research Grant (UMRG) Programme (Project No. RP024A-13AET), Ministry of Education Malaysia through Fundamental Research Grant Scheme (Project No. FP010B-2013B) and Ministry of Sains, Technology and Innovation (MOSTI) Malaysia through Science Fund (Project No. SF011-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yew Hoong Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chew, C.C., Goh, K.H., Gorji, M.S. et al. Breakdown field enhancement of Si-based MOS capacitor by post-deposition annealing of the reactive sputtered ZrOxNy gate oxide. Appl. Phys. A 122, 66 (2016). https://doi.org/10.1007/s00339-016-9624-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9624-7

Keywords

Navigation