Skip to main content
Log in

Thermal expansion coefficient and thermal fatigue of discontinuous carbon fiber-reinforced copper and aluminum matrix composites without interfacial chemical bond

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fully dense carbon fiber-reinforced copper and aluminum matrix (Cu–CF and Al–CF) composites were fabricated by hot press without the need for an interfacial chemical compound. With 30 vol% carbon fiber, the thermal expansion coefficients (TECs) of pure Cu and Al were decreased to 13.5 × 10−6 and 15.5 × 10−6/K, respectively. These improved TECs of Cu–CF and Al–CF composites were maintained after 16 thermal cycles; moreover, the TEC of the 30 vol% Cu–CF composite was stable after 2500 thermal cycles between −40 and 150 °C. The thermal strain caused by the TEC mismatch between the matrix and the carbon fiber enables mechanical enhancement at the matrix/carbon fiber interface and allows conservation of the improved TECs of Cu–CF and Al–CF composites after thermal cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anandan SS, Ramalingam V (2008) Therm Sci 12:5

    Article  Google Scholar 

  2. Ciappa M (2002) Microelectron Reliab 42:653

    Article  Google Scholar 

  3. Schelling PK, Shi L, Goodson KE (2005) Mater Today 8:30

    Article  CAS  Google Scholar 

  4. Schulz-Harder J (2003) Microelectron Reliab 43:359

    Article  CAS  Google Scholar 

  5. Cho SH (2008) Microelectron Reliab 48:1696

    Article  Google Scholar 

  6. He H, Fu R, Wang D, Song X, Jing M (2007) Mater Lett 61:4131

    Article  CAS  Google Scholar 

  7. Johannessen R, Oldervoll F, Strisland F (2008) Microelectron Reliab 48:1711

    Article  CAS  Google Scholar 

  8. Kim S, Kim KS, Kim SS, Suganuma K, Izuta G (2009) J Electron Mater 38:2668

    Article  CAS  ADS  Google Scholar 

  9. Ma H, Suhling JC (2009) J Mater Sci 44:1141

    Article  CAS  ADS  Google Scholar 

  10. Mahdi H, Lopez P, Fuentes A, Jones R (2006) Int J Energy Res 30:851

    Article  Google Scholar 

  11. Murali S, Srikanth N, Wong YM, Vath CJ III (2007) J Mater Sci 42:615

    Article  CAS  ADS  Google Scholar 

  12. Xu H, Liu C, Silberschmidt VV, Chen Z (2010) J Electron Mater 39:124

    Article  ADS  Google Scholar 

  13. Luedtke A (2004) Adv Eng Mater 6:142

    Article  CAS  Google Scholar 

  14. Zweben C (1998) J Miner Met Mater Soc 50:47

    Article  CAS  Google Scholar 

  15. Geffroy PM, Silvain JF (2007) Mater Sci Forum 534–536:1505

    Article  Google Scholar 

  16. Mathias JD, Geffroy PM, Silvain JF (2009) Appl Therm Eng 29:2391

    Article  Google Scholar 

  17. Herr E, Frey T, Schlegel R, Stuck A, Zehringer R (1997) Microelectron Reliab 37:1719

    Article  Google Scholar 

  18. Huber T, Degischer HP, Lefranc G, Schmitt T (2006) Compos Sci Technol 66:2206

    Article  CAS  Google Scholar 

  19. Rao VV, Krishna MV, Nagaraju J (2004) Compos Sci Technol 64:2459

    Article  CAS  Google Scholar 

  20. Ruch PW, Beffort O, Kleiner S, Weber L, Uggowitzer PJ (2006) Compos Sci Technol 66:2677

    Article  CAS  Google Scholar 

  21. Zweben C (1998) J Miner Met Mater Soc 50(6):47

    Article  CAS  Google Scholar 

  22. Geffroy PM, Mathias JD, Silvain JF (2008) Adv Eng Mater 10:400

    Article  CAS  Google Scholar 

  23. Veillère A, Heintz JM, Chandra N, Douin J, Lahaye M, Lalet G, Vincent C, Silvain JF (2012) Mater Res Bull 47:375

    Article  Google Scholar 

  24. Kurita H, Kwon H, Estili M, Kawasaki A (2011) Mater Trans 52(10):1960

    Article  CAS  Google Scholar 

  25. Omori M (2009) Mater Sci Eng, A 287:183

    Article  Google Scholar 

  26. Silvain JF, Vincent C, Heintz JM, Chandra N (2009) Compos Sci Technol 69:2474

    Article  CAS  Google Scholar 

  27. Estili M, Kawasaki A (2010) Adv Mater 22:607

    Article  PubMed  CAS  Google Scholar 

  28. Karadeniz ZH, Kumlutas D (2007) Compos Struct 78:1

  29. Kataoka Y (2008) Trans Jpn Soc Mech Eng A 74(740):536

    Article  CAS  Google Scholar 

  30. Sideridis E (1994) Compos Sci Technol 51:301

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the “Délégation Générale pour l’Armement” and “Région Aquitaine” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Kurita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalet, G., Kurita, H., Heintz, JM. et al. Thermal expansion coefficient and thermal fatigue of discontinuous carbon fiber-reinforced copper and aluminum matrix composites without interfacial chemical bond. J Mater Sci 49, 397–402 (2014). https://doi.org/10.1007/s10853-013-7717-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7717-7

Keywords

Navigation