Skip to main content
Log in

(111)-Oriented Co0.8Fe2.2O4+δ thin film grown by pulsed laser deposition: structural and magnetic properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The perfect (111)-oriented Co0.8Fe2.2O4+δ thin films were grown on Pt(111)/Si substrate by pulsed laser deposition technique. Co0.8Fe2.2O4+δ film grown at oxygen pressure of 10 mTorr (optimum condition) has the highest (111)-orientation degree, the lowest surface roughness, uniformly compacted nanosize grain-feature structure (50–80 nm), and the highest magnetization. The Fe K-edge X-ray absorption near edge structure analyses revealed that, in Fe-doped CoFe2O4 film, the Fe also exists as Fe3+ (Co0.8Fe2.2O4+δ ), which affects the lattice parameter as well as magnetic properties. The magnetic properties (saturation magnetization, coercivity, and squareness) of Co0.8Fe2.2O4+δ thin film are significantly higher than those of CoFe2O4 film. Moreover, the (111)-oriented Co0.8Fe2.2O4+δ thin film demonstrates strong in-plane magnetic anisotropy, which results from orientation, as well as the stress-induced magnetic anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ramos AV, Santos TS, Miao GX, Guittet MJ, Moussy JB, Moodera JS (2008) Phys Rev B 78:180402

    Article  Google Scholar 

  2. Stichauer L, Gavoille G, Simsa Z (1996) J Appl Phys 79:3645

    Article  CAS  Google Scholar 

  3. Jiles DC, Lo CCH (2003) Sensors Actuators A 106:3

    Article  CAS  Google Scholar 

  4. Yan L, Yang Y, Wang Z, Xing Z, Li J, Viehland D (2009) J Mater Sci 44:5080. doi:10.1007/s10853-009-3679-1

    Article  CAS  Google Scholar 

  5. Shi M, Yu GY, Su HL, Zuo RZ, Xu YD, Wu G, Wang L (2011) J Mater Sci 46:4710. doi:10.1007/s10853-011-5381-3

    Article  CAS  Google Scholar 

  6. Ma J, Hu J, Li Z, Nan CW (2011) Adv Mater 23:1062

    Article  CAS  Google Scholar 

  7. Sawatzky GA, Van der Woude F, Morrish AH (1969) Phys Rev 187:747

    Article  CAS  Google Scholar 

  8. Hu G, Choi JH, Eom CB, Harris VG, Suzuki Y (2000) Phys Rev B 62:R779

    Article  CAS  Google Scholar 

  9. Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. IEEE, Hoboken

    Google Scholar 

  10. Júnior AF, Zapf V, Egan P (2007) J Appl Phys 101:09M506

    Article  Google Scholar 

  11. Nlebedim IC, Snyder JE, Moses AJ, Jiles DC (2012) IEEE Trans Magn 48:3084

    Article  CAS  Google Scholar 

  12. Tachiki M (1960) Prog Theor Phys 23:1055

    Article  CAS  Google Scholar 

  13. Li Y, Fang Q, Liu Y, Lv Q, Yin P (2007) J Magn Magn Mater 313:57

    Article  CAS  Google Scholar 

  14. Zi ZF, Zhang SB, Wang B, Zhu XB, Yang ZR, Dai JM, Song WH, Sun YP (2010) J Magn Magn Mater 322:148

    Article  CAS  Google Scholar 

  15. Gu BX, Hua ZH (2006) J Magn Magn Mater 299:392

    Article  CAS  Google Scholar 

  16. Moyer JA, Vaz CAF, Negusse E, Arena DA, Henrich VE (2011) Phys Rev B 83:035121

    Article  Google Scholar 

  17. Moyer JA, Vaz CAF, Arena DA, Kumah D, Negusse E, Henrich VE (2011) Phys Rev B 84:054447

    Article  Google Scholar 

  18. Moyer JA, Vaz CAF, Negusse E, Arena DA, Henrich VE (2012) Phys Rev B 86:174404

    Article  Google Scholar 

  19. Lisfi A, Williams CM, Nguyen LT, Lodder JC, Coleman A, Corcoran H, Johnson A, Chang P, Kumar A, Morgan W (2007) Phys Rev B 76:054405

    Article  Google Scholar 

  20. Yin JH, Ding J, Liu BH, Yi JB, Miao XS, Chen JS (2007) J Appl Phys 101:09K509

    Article  Google Scholar 

  21. Dhakal T, Mukherjee D, Hyde R, Mukherjee P, Phan MH, Srikanth H, Witanachchi S (2010) J Appl Phys 107:053914

    Article  Google Scholar 

  22. Mukherjee D, Dhakal T, Phan M, Srikanth H, Mukherjee P, Witanachchi S (2011) Phys B 406:2663

    Article  CAS  Google Scholar 

  23. Raghunathan A, Nlebedim IC, Jiles DC, Snyder JE (2010) J Appl Phys 107:09A516

    Article  Google Scholar 

  24. Khodaei M, Seyyed Ebrahimi SA, Park YJ, Ok JM, Kim JS, Son J, Baik S (2013) J Magn Magn Mater 340:16

    Article  CAS  Google Scholar 

  25. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537

    Article  CAS  Google Scholar 

  26. Hassan RS, Viart N, Ulhaq-Bouillet C, Loison JL, Versini G, Vola JP, Créguta O, Pourroy G, Muller D, Chateigner D (2007) Thin Solid Films 515:2943

    Article  CAS  Google Scholar 

  27. Mishra RK, Thomas G (1977) J Appl Phys 48:4576

    Article  CAS  Google Scholar 

  28. Luders U, Bibes M, Bobo JF, Fontcuberta J (2005) Appl Phys A 80:427

    Article  Google Scholar 

  29. Sorescu M, Grabias A, Tarabasanu-Mihaila D, Diamandescu L (2001) J Mater Synth Proc 9:119

    Article  CAS  Google Scholar 

  30. Jang JS, Kim DH, Choi SH, Jang JW, Kim HG, Lee JS (2012) Int J Hydrogen Energy 37:11081

    Article  CAS  Google Scholar 

  31. Papakonstantinou P, O’Neill MC, Atkinson R, Al-Wazzan R, Morrow T, Salter IW (1998) J Magn Magn Mater 189:120

    Article  CAS  Google Scholar 

  32. Raghunathan A, Jiles DC, Snyder JE (2011) J Appl Phys 109:083922

    Article  Google Scholar 

  33. Zhou J, He H, Nan CW (2007) Appl Surf Sci 253:7456

    Article  CAS  Google Scholar 

  34. Suzuki Y, Hu G, van Dover RB, Cava RJ (1999) J Magn Magn Mater 191:1

    Article  CAS  Google Scholar 

  35. Rigato F, Geshev J, Skumryev V, Fontcuberta J (2009) J Appl Phys 106:113924

    Article  Google Scholar 

  36. Margulies DT, Parker FT, Rudee ML, Spada FE, Chapman JN, Aitchison PR, Berkowitz AE (1997) Phys Rev Lett 79:5162

    Article  CAS  Google Scholar 

  37. Chen Z, Yang A, Yoon SD, Ziemer K, Vittoria C, Harris VG (2006) J Magn Magn Mater 301:166

    Article  CAS  Google Scholar 

  38. Papakonstantinou P, O’Neill M, Atkinson R, Salter IW, Gerber R (1996) J Magn Magn Mater 152:401

    Article  CAS  Google Scholar 

  39. Stoner EC, Wohlfarth EP (1948) Phil Trans R Soc Lond A 240:599

    Article  Google Scholar 

  40. Coey J (2010) Magnetism and magnetic materials. Cambridge University Press, New York

    Book  Google Scholar 

  41. Seifikar S, Tabei A, Sachet A, Rawdanowicz T, Bassiri-Gharb N, Schwartz J (2012) J Appl Phys 112:063908

    Article  Google Scholar 

  42. Gao XS, Bao DH, Birajdar B, Habisreuther T, Mattheis R, Schubert MA, lexe M, Hesse D (2009) J Phys D: Appl Phys 42:175006

    Article  Google Scholar 

  43. Bozorth RM, Tilden EF, Williams AJ (1955) Phys Rev 99:1788

    Article  CAS  Google Scholar 

  44. Wang XW, Zhang YQ, Meng H, Wang ZJ, Zhang ZD (2011) J Alloys Compd 509:7803

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. K. author is grateful for the financial support from Department of Materials Science & Engineering, and Ferroelectric Nano Materials Lab at POSTECH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khodaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodaei, M., Seyyed Ebrahimi, S.A., Park, Y.J. et al. (111)-Oriented Co0.8Fe2.2O4+δ thin film grown by pulsed laser deposition: structural and magnetic properties. J Mater Sci 48, 6960–6969 (2013). https://doi.org/10.1007/s10853-013-7504-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7504-5

Keywords

Navigation