Skip to main content
Log in

Characteristics of Thin Films of Ferromagnetic Semiconductor Fe1.1Ti0.9O3−δ Under the Pulsed Laser Deposition Method at Different Substrate Temperatures

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, epitaxial Fe1.1Ti0.9O3−δ thin films with a smooth surface were prepared by adjusting the substrate temperature (TS) and via pulsed laser deposition (PLD) in Ar gas and α-Al2O3 (001) substrate. During the study of the optical properties and magnetism of the thin film samples, it was established that all thin films grown in Ar gas were hypoxic, having more oxygen vacancies and widening the optical band gap of the thin films significantly. The substrate temperature has a significant effect on the crystallization and magnetism of the thin films. It was established that the crystallization of a film at TS = 800 °C is the best, and the saturation magnetization reaches 172.5 emu/cc. The coercivity of films at TS = 600 °C reaches 15 kOe affected by film stress and oxygen vacancies, which is reportedly the maximum value in (1 − x)Fe2O3 − xFeTiO3. Thereafter, it decreases rapidly with the increase in TS, resulting in lattice relaxation, stress reduction, and coercivity reduction. Oxygen vacancies affect the electrical properties in thin films. In contrast to bulk materials, we established that the conduction mechanism of films changes from thermally activated transition to programmed transition with decreasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dietl, T., Ohno, H.: Ferromagnetic III–V and II–VI semiconductors. MRS Bull. 28(10), 714–719 (2003). https://doi.org/10.1557/mrs2003.211

    Article  Google Scholar 

  2. Chambers, S.A., Farrow, R.F.C.: New possibilities for ferromagnetic semiconductors. MRS Bull. 28(10), 729–733 (2003). https://doi.org/10.1557/mrs2003.214

    Article  Google Scholar 

  3. Molnar, S.V., Read, D.: New materials for semiconductor spin-electronics. Proc. IEEE 91(5), 715–726 (2003). https://doi.org/10.1109/JPROC.2003.811803

    Article  Google Scholar 

  4. Charilaou, M., et al.: Interaction-induced partitioning and magnetization jumps in the mixed-spin oxide FeTiO3-Fe2O3. Phys. Rev. Lett. 107(5), 057202 (2011). https://doi.org/10.1103/PhysRevLett.107.057202

    Article  ADS  Google Scholar 

  5. Meng, X.Y., et al.: Enhanced photoelectrochemical activity for Cu and Ti doped hematite: the first principles calculations. Appl. Phys. Lett. 98(11), 112104 (2011). https://doi.org/10.1063/1.3567766

    Article  ADS  Google Scholar 

  6. Charilaou, M., et al.: Large spontaneous magnetostriction in FeTiO3 and adjustable magnetic configuration in Fe(III)-doped FeTiO3. Phys. Rev. B 86(2), 024439 (2012). https://doi.org/10.1103/PhysRevB.86.024439

    Article  ADS  Google Scholar 

  7. Moure, C., Peña, O.: Magnetic features in REMeO3 perovskites and their solid solutions (RE=rare-earth, Me=Mn, Cr). J. Magn. Magn. Mater. 337–338, 1–22 (2013). https://doi.org/10.1016/j.jmmm.2013.02.022

    Article  ADS  Google Scholar 

  8. Ishikawa, Y., Akimoto, S.-I.: Magnetic properties of the FeTiO3-Fe2O3 solid solution series. J. Phys. Soc. Jpn. 12(10), 1083–1098 (1957). https://doi.org/10.1143/JPSJ.12.1083

    Article  ADS  Google Scholar 

  9. Ishikawa, Y.: Magnetic properties of ilmenite-hematite system at low temperature. J. Phys. Soc. Jpn. 17(12), 1835–1843 (1962). https://doi.org/10.1143/JPSJ.17.1835

    Article  ADS  Google Scholar 

  10. Hojo, H., et al.: Magnetic structures of FeTiO3-Fe2O3 solid solution thin films studied by soft X-ray magnetic circular dichroism and ab initio multiplet calculations. Appl. Phys. Lett. 104(11), 112408 (2014). https://doi.org/10.1063/1.4868638

    Article  ADS  Google Scholar 

  11. Fujii, T., et al.: Microstructural properties of (112¯0)-oriented hematite–ilmenite solid solution films. Thin Solid Films 591, 245–249 (2015). https://doi.org/10.1016/j.tsf.2015.04.028

    Article  ADS  Google Scholar 

  12. Song, P., et al.: Magnetization jumps and exchange bias induced by a partially disordered antiferromagnetic state in (FeTiO3)0.9-(Fe2O3)0.1. J. Appl. Phys. 115(21), 213907 (2014). https://doi.org/10.1103/PhysRevApplied.11.054018

  13. Song, P., et al., Dynamic magnetic-transformation-induced exchange bias in [α-Fe2O3]0.1 [FeTiO3]0.9. Phys. Rev. Appl. 11(5), 054018 (2019). https://doi.org/10.1103/PhysRevApplied.11.054018

  14. McEnroe, S.A., et al.: Lamellar magnetism: effects of interface versus exchange interactions of nanoscale exsolutions in the ilmenite-hematite system. J. Phys: Conf. Ser. 17, 154–167 (2005). https://doi.org/10.1088/1742-6596/17/1/022

    Article  ADS  Google Scholar 

  15. Hojo, H., et al., Room-temperature ferrimagnetic semiconductor 0.6FeTiO3∙0.4Fe2O3 solid solution thin films. Appl. Phys. Lett. 89(14), 142503 (2006). https://doi.org/10.1063/1.2357547

  16. Hamie, A., et al.: Structural, optical, and magnetic properties of the ferromagnetic semiconductor hematite-ilmenite Fe2−xTixO3−δ thin films on SrTiO3(001) prepared by pulsed laser deposition. J. Appl. Phys. 108(9), 093710 (2010). https://doi.org/10.1063/1.3501104

    Article  ADS  Google Scholar 

  17. Matoba, T., et al.: Low-temperature growth of highly crystallized FeTiO3-Fe2O3 solid solution thin films with smooth surface morphology. J. Phys: Conf. Ser. 200(6), 062011 (2010). https://doi.org/10.1088/1742-6596/200/6/062011

    Article  Google Scholar 

  18. Chambers, S.A.: Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics. Surf. Sci. Rep. 61(8), 345–381 (2006). https://doi.org/10.1016/j.surfrep.2006.05.001

    Article  ADS  Google Scholar 

  19. Dou, J., et al.: Preparation and characterization of epitaxial ilmenite-hematite films. J. Appl. Phys. 101(5), 053908 (2007). https://doi.org/10.1063/1.2450678

    Article  ADS  Google Scholar 

  20. Hojo, H., et al.: Epitaxial growth of room-temperature ferrimagnetic semiconductor thin films based on the ilmenite-hematite solid solution. Appl. Phys. Lett. 89(8), 082509 (2006). https://doi.org/10.1063/1.2337276

    Article  ADS  Google Scholar 

  21. Dai, Z., et al.: Structural, optical, and electrical properties of laser deposited FeTiO3 films on C- and A-cut sapphire substrates. J. Appl. Phys. 85(10), 7433–7437 (1999). https://doi.org/10.1063/1.369374

    Article  ADS  Google Scholar 

  22. Bocher, L., et al., Direct evidence of Fe2+Fe3+ charge ordering in the ferrimagnetic hematite-ilmenite Fe1.35Ti0.65O3-δ thin films. Appl. Phys. Lett. 111(16), 167202 (2013). https://doi.org/10.1103/PhysRevLett.111.167202

  23. Popova, E., et al.: Systematic investigation of the growth and structural properties of FeTiO3±δ epitaxial thin films. J. Appl. Phys. 103(9), 093909 (2008). https://doi.org/10.1063/1.2913346

    Article  ADS  Google Scholar 

  24. Ndilimabaka, H., et al., Magnetic and transport properties of the room-temperature ferrimagnetic semiconductor Fe1.5Ti0.5O3±δ: influence of oxygen stoichiometry. J. Appl. Phys. 103(7),  07D137 (2008). https://doi.org/10.1063/1.2835479

  25. Ishikawa, Y.: Electrical properties of FeTiO3-Fe2O3 solid solution series. J. Phys. Soc. Jpn. 13(1), 37–42 (1958). https://doi.org/10.1143/JPSJ.13.37

    Article  ADS  Google Scholar 

  26. Zhou, F., Kotru, S., Pandey, R.K.: Pulsed laser-deposited ilmenite–hematite films for application in high-temperature electronics. Thin Solid Films 408(1), 33–36 (2002). https://doi.org/10.1016/S0040-6090(02)00075-5

    Article  ADS  Google Scholar 

  27. Dumont, Y., et al.: Tuning magnetic properties with off-stoichiometry in oxide thin films: an experiment with yttrium iron garnet as a model system. Phys. Rev. B 76(10), 104413 (2007). https://doi.org/10.1103/PhysRevB.76.104413

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51971087) and funded by the Science and Technology Project of Hebei Education Department (Grant No. ZD2021040), the Department of Science and Technology of Hebei Province Scientific and Technological Research Project (Grant No. 15211036), and the science and technology plan projects of Zhangjiakou City (Grant No. 1611070A). National Natural Science Foundation of China,51971087,Li Ma,Funded by Science and Technology Project of Hebei Education Department,ZD2021040,Liyun Jia,the Department of Science and Technology of Hebei Province Scientific and Technological Research Project,15211036,Jialing Xu,he financial support from science and technology plan projects of Zhangjiakou City,1611070A,Jialing Xu

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liyun Jia or Denglu Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Su, Y., Jia, L. et al. Characteristics of Thin Films of Ferromagnetic Semiconductor Fe1.1Ti0.9O3−δ Under the Pulsed Laser Deposition Method at Different Substrate Temperatures. J Supercond Nov Magn 35, 851–856 (2022). https://doi.org/10.1007/s10948-021-06119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06119-y

Keywords

Navigation