Skip to main content
Log in

Asymmetric polyurethane membrane with inflammation-responsive antibacterial activity for potential wound dressing application

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

By combining solvent evaporation with wet phase inversion technique, an asymmetric polyurethane membrane (ASPU) was constructed from a sulfanilamide-conjugated PU, as a potential candidate for wound dressing application. As a result of the combined membrane-formation method, the ASPU membrane was constituted by an integral and dense skin layer supported by a porous sublayer. The skin layer was found impermeable to pathogenic organisms, while the sublayer was intended for draining excessive exudates. Compared with typical PU membrane dressings commercially available, the ASPU membrane exhibited a reasonable moisture vapor transmission rate, as well as significantly improved gas circulation and exudate absorption capabilities, which synergistically optimized the wound microenvironment for proper healing. Furthermore, the sulfanilamide-conjugated PU constituting ASPU membrane was designed as susceptible to urease, a representative hydrolase derived from inflammation-causing pathogens. In the presence of urease, urea linkages adjacent to sulfanilamide monomeric units were found catalytically cleaved, enabling release of free antibiotic sulfanilamide that held pharmacological activity from ASPU membrane. When incubated without urease, those cleavage sites exhibited substantially high resistance against hydrolysis so that no sulfanilamide release was detected throughout the incubation period. In this inflammation-responsive manner, the anti-inflammatory efficiency of antibiotics was significantly enhanced, while undesirable side effects associated with antibiotic abuse was minimized. Cell culture assay further revealed that the ASPU membrane displayed no cytotoxicity toward normal human dermis fibroblasts, suggesting a biocompatible potential. Based on these results, the multifunctional ASPU membrane designed in this study might be clinically suitable as an ideal biomedical dressing for wound care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 3

Similar content being viewed by others

References

  1. Menaker GM (2002) Semin Cutan Med Surg 21:171

    Article  Google Scholar 

  2. Ovington LG (2007) Clin Dermatol 25:33

    Article  Google Scholar 

  3. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) J Pharm Sci 97:2892

    Article  CAS  Google Scholar 

  4. Wang LS, Chow PY, Tan DCW, Zhang WD, Yang YY (2004) Adv Mater 16:1790

    Article  CAS  Google Scholar 

  5. Bertal K, Shepherd J, Douglas CWI, Madsen J, Morse A, Edmondson S, Armes SP, Lewis A, MacNeil S (2009) J Mater Sci 44:6233. doi:10.1007/s10853-009-3843-7

    Article  CAS  Google Scholar 

  6. Smith TJ, Kennedy JE, Higginbotham CL (2010) J Mater Sci 45:2884. doi:10.1007/s10853-010-4278-x

    Article  CAS  Google Scholar 

  7. Salgado CL, Sanchez EMS, Mano JF, Moraes AM (2012) J Mater Sci 47:659. doi:10.1007/s10853-011-5836-6

    Article  CAS  Google Scholar 

  8. Zahedi P, Rezaeian I, Jafari SH (2013) J Mater Sci 48:3147. doi:10.1007/s10853-012-7092-9

    Article  CAS  Google Scholar 

  9. Yang JM, Lin HT (2004) J Membr Sci 243:1

    Article  CAS  Google Scholar 

  10. Yang JM, Yang SJ, Lin HT, Chen JK (2007) J Biomed Mater Res B 80B:43

    Article  CAS  Google Scholar 

  11. Morton LM, Phillips TJ (2012) Semin Cutan Med Surg 31:33

    Article  CAS  Google Scholar 

  12. Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY, Huang RN (2001) Biomaterials 22:165

    Article  CAS  Google Scholar 

  13. Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J (2011) Harrison’s principles of internal medicine, 18th edn. McGraw Hill Professional, New York

    Google Scholar 

  14. Arias CA, Murray BE (2009) N Engl J Med 360:439

    Article  CAS  Google Scholar 

  15. Xu H, Ning H, Chen Y, Fan H, Shi B (2013) Prog Org Coat 76:924

    Article  CAS  Google Scholar 

  16. Queen D, Gaylor JDS, Evans JH, Courtney JM, Reid WH (1987) Biomaterials 8:367

    Article  CAS  Google Scholar 

  17. Kimbal JW (1975) Biology, 3rd edn. Addison-Wesley Publishing Company, Boston

    Google Scholar 

  18. Lamke LO, Nilsson GE, Reithner HL (1977) Burns 3:159

    Article  Google Scholar 

  19. Wu P (1993) Experimental and theoretical study of water vapour transmission in hydrocolloid wound dressings, 3rd edn. PhD thesis. Strathclyde University, Glasgow

  20. Sharma PD (2007) Microbiology, 2nd edn. Rastogi Publications, Meerut

    Google Scholar 

  21. Smith PT, King AD Jr, Goodman N (1993) J Gen Microbiol 139:957

    Article  CAS  Google Scholar 

  22. Agnihotri N, Gupta V, Joshi RM (2004) Burn 30:241

    Article  CAS  Google Scholar 

  23. Fang SD, Xia ZP (2000) Clinical infection in surgery, 1st edn. Shenyang Press, Shenyang

    Google Scholar 

  24. Borgquist O, Gustafsson L, Ingemansson R, Malmsjö M (2009) Wounds 21:302

    Google Scholar 

  25. Hess CT (2005) Wound care, 5th edn. Lippincott Williams & Wilkins, Ambler

    Google Scholar 

  26. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Int J Polym Sci 2011:1

    Article  Google Scholar 

  27. Hess CT (2013) Clinical guide to skin & wound care, 7th edn. Lippincott Williams & Wilkins, Ambler

    Google Scholar 

  28. Winter GD (1962) Nature 193:293

    Article  CAS  Google Scholar 

  29. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) J Biomed Mater Res B 67B:675

    Article  CAS  Google Scholar 

  30. Wong P (1980) Physical evaluation of hydrogel as a burn wound dressing. MSc thesis, Strathclyde University, Glasgow

  31. Yoo HJ, Kim HD (2008) J Appl Polym Sci 107:331

    Article  CAS  Google Scholar 

  32. Stannett VT (1968) In: Crank J, Park GS (eds) Diffusion in polymers. Academic Press, New York, p 41

    Google Scholar 

  33. Koros WJ, Hellums MW (1990) In: Kroschwitz JI (ed) Encyclopedia of polymer science and technology. Wiley, New York, p 1211

    Google Scholar 

  34. Yoo HJ, Kim HD (2008) J Biomed Mater Res B 85B:326

    Article  CAS  Google Scholar 

  35. Hopfenberg HB (1976) In: Paul DR, Harris FW (eds) Controlled release polymeric formulations. American Chemical Society, Washington, p 26

    Chapter  Google Scholar 

  36. Woo GLY, Mittelman MW, Santerre JP (2000) Biomaterials 21:1235

    Article  CAS  Google Scholar 

  37. Ravina E, Kubinyi H (2011) The evolution of drug discovery: from traditional medicines to modern drugs, 1st edn. Wiley, Weinheim

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support from National Natural Science Foundation of China (21206096), New Teachers’ Fund for Doctor Stations, Ministry of Education of China (20120181120116), and Fundamental Research Funds for the Central Universities, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Chen or Haojun Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Chang, J., Chen, Y. et al. Asymmetric polyurethane membrane with inflammation-responsive antibacterial activity for potential wound dressing application. J Mater Sci 48, 6625–6639 (2013). https://doi.org/10.1007/s10853-013-7461-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7461-z

Keywords

Navigation