Skip to main content
Log in

Thermal Stability of Annealed Germanium-Tin Alloys Grown by Molecular Beam Epitaxy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The thermal stability of undoped and boron-doped germanium tin (Ge1−x Sn x ) alloys grown by molecular beam epitaxy with varying composition and layer thickness was investigated. The alloys were annealed in forming gas at various temperatures up to 800°C for 1 min using rapid thermal processing, and were characterized using high-resolution x-ray diffraction and Rutherford backscattering spectrometry. It was found that the Ge1−x Sn x alloys were stable to well above the growth temperature, but the stability decreased with increasing thickness, Sn content, and doping. Ge1−x Sn x alloys with low Sn composition (x ∼ 0.025) were stable up to 700°C, and for a given Sn composition, the undoped alloys were more thermally stable than the doped alloys. As the thickness of the Ge0.975Sn0.025 alloys increased to about 950 nm, the temperature of thermal stability dropped to 500°C. As the Sn composition of the 90 nm-Ge1−x Sn x alloys increased up to x = 0.08, the temperature of thermal stability dropped to 300°C. At higher annealing temperatures, the Ge1−x Sn x alloy degraded with lower crystal quality, and a gradient in the Sn composition appeared, which may be due to Sn diffusion or segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hu, J. Meyer, K. Richardson, and L. Shah, Opt. Mater. Express 3, 1571 (2013).

    Article  Google Scholar 

  2. A. Nedelcu, V. Guériaux, L. Dua, and X. Marcadet, Semicond. Sci. Technol. 24, 045006 (2009).

    Article  Google Scholar 

  3. J. Michel, J. Liu, and L.C. Kimerling, Nat. Photonics 4, 527 (2010).

    Article  Google Scholar 

  4. V.R. D’Costa, C.S. Cook, A.G. Birdwell, C.L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, Phys. Rev. B 73, 16 (2006).

    Google Scholar 

  5. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J.M, Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).

    Article  Google Scholar 

  6. R. Chen, S. Gupta, Y.-C. Huang, Y. Huo, C.W. Rudy, E. Sanchez, Y. Kim, T.I. Kamins, K.C. Saraswat, and J.S. Harris, Nano Lett. 14, 37 (2014).

    Article  Google Scholar 

  7. B.R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S.A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H.A. Naseem, and S.-Q. Yu, Appl. Phys. Lett. 105, 221117 (2014).

    Article  Google Scholar 

  8. S.A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Cousar, B.R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, H.A. Naseem, and S.-Q. Yu, Appl. Phys. Lett. 105, 151109 (2014).

    Article  Google Scholar 

  9. M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, Appl. Phys. Lett. 102, 3 (2013).

    Article  Google Scholar 

  10. J.P. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, Appl. Phys. Lett. 102, 251117 (2013).

    Article  Google Scholar 

  11. R. Soref, Nat. Photonics 4, 495 (2010).

    Article  Google Scholar 

  12. S. Kim, N. Bhargava, J. Gupta, M. Coppinger, and J. Kolodzey, Opt. Express 22, 11029 (2014).

    Article  Google Scholar 

  13. N. Bhargava, M. Coppinger, J.P. Gupta, L. Wielunski, and J. Kolodzey, Appl. Phys. Lett. 103, 4 (2013).

    Article  Google Scholar 

  14. M. Nakamura, Y. Shimura, S. Takeuchi, O. Nakatsuka, and S. Zaima, Thin Solid Films 520, 3201 (2012).

    Article  Google Scholar 

  15. R. Roucka, J. Tolle, C. Cook, A.V.G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Z.D. Chen, and S. Zollner, Appl. Phys. Lett. 86, 191912 (2005).

    Article  Google Scholar 

  16. C.D. Thurmond, F.A. Trumbore, and M. Kowalchik, J. Chem. Phys. 25, 799 (1956).

    Article  Google Scholar 

  17. X. Deng, B.K. Yang, S.A. Hackney, M. Krishnamurthy, and D.R.M. Williams, Phys. Rev. Lett. 80, 1022 (1998).

    Article  Google Scholar 

  18. S. Wojtczuk, P. Chiu, X. Zhang, D. Pulver, C. Harris, and B. Siskavich, AIP Conf. Proc. 1407, 9 (2011).

    Article  Google Scholar 

  19. D.Z.X. Zhang, B. Chengz, Z. Liu, G. Zhang, C. Xue and Q. Wang, ECS Solid State Lett. 3, 10 (2014).

  20. R. Roucka, J. Xie, J. Kouvetakis, J. Mathews, V. D’Costa, J. Menendez, J. Tolle, and S.Q. Yu, J. Vac. Sci. Technol. B 26, 1952 (2008).

    Article  Google Scholar 

  21. W. Wang, S.J. Su, J. Zheng, G.Z. Zhang, Y.H. Zuo, B.W. Cheng, and Q.M. Wang, Chin. Phys. B 20, 5 (2011).

    Google Scholar 

  22. S.J. Su, W. Wang, B.W. Cheng, G.Z. Zhang, W.X. Hu, C.L. Xue, Y.H. Zuo, and Q.M. Wang, J. Cryst. Growth 317, 43 (2011).

    Article  Google Scholar 

  23. B. Vincent, Y. Shimura, S. Takeuchi, T. Nishimura, G. Eneman, A. Firrincieli, J. Demeulemeester, A. Vantomme, T. Clarysse, O. Nakatsuka, S. Zaima, J. Dekoster, M. Caymax, and R. Loo, Microelectron. Eng. 88, 342 (2011).

    Article  Google Scholar 

  24. B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D.H. Petersen, O. Hansen, H.H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, Appl. Phys. Lett. 99, 3 (2011).

    Article  Google Scholar 

  25. R. Chen, Y.-C. Huang, S. Gupta, A.C. Lin, E. Sanchez, Y. Kim, K.C. Saraswat, T.I. Kamins, and J.S. Harris, J. Cryst. Growth 365, 29 (2013).

    Article  Google Scholar 

  26. H. Li, Y.X. Cui, K.Y. Wu, W.K. Tseng, H.H. Cheng, and H. Chen, Appl. Phys. Lett. 102, 25 (2013).

  27. S. Kim, J. Gupta, N. Bhargava, M. Coppinger, and J. Kolodzey, IEEE Electron. Device Lett. 34, 1217 (2013).

    Article  Google Scholar 

  28. N. Bhargava, J. Gupta, T. Adam, and J. Kolodzey, J. Electron. Mater. 43, 931 (2014).

    Article  Google Scholar 

  29. M.W. Dashiell, J. Kolodzey, P. Boucaud, V. Yam, and J.M. Lourtioz, J. Vac. Sci. Technol. B 18, 1728 (2000).

    Article  Google Scholar 

  30. M. Mayer, SIMNRA version: 6.06 (2011). http://home.mpcdf.mpg.de/~mam/.

  31. N. Faleev, N. Sustersic, N. Bhargava, J. Kolodzey, S. Magonov, D.J. Smith, and C. Honsberg, J. Cryst. Growth 365, 35 (2013).

    Article  Google Scholar 

  32. N. Faleev, N. Sustersic, N. Bhargava, J. Kolodzey, A.Y. Kazimirov, and C. Honsberg, J. Cryst. Growth 365, 44 (2013).

    Article  Google Scholar 

  33. L.D. Lanzerotti, J.C. Sturm, E. Stach, R. Hull, T. Buyuklimanli, and C. Magee, Appl. Phys. Lett. 70, 3125 (1997).

    Article  Google Scholar 

  34. H.P.L. de Guevara, A.G. Rodriguez, H. Navarro-Contreras, and M.A. Vidal, Appl. Phys. Lett. 83, 4942 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to T. Adam, D. Beatson, G. Katulka, M. Kim, R. Opila, M. Pikulin, G. Pomrenke, R. Soref, K. Unruh, Y. K. Yeo and S. Zollner for useful discussions. This work was financially supported by the AFOSR under Grant Number: FA9550-09-1-0688, by Air Liquide (Voltaix) Corporation under Grant Number: 12A01464, and by gifts from IBM corporation, IR labs, Thorlabs, and Air Liquide/Voltaix Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Kolodzey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhargava, N., Gupta, J.P., Faleev, N. et al. Thermal Stability of Annealed Germanium-Tin Alloys Grown by Molecular Beam Epitaxy. J. Electron. Mater. 46, 1620–1627 (2017). https://doi.org/10.1007/s11664-016-5205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5205-y

Keywords

Navigation