Skip to main content
Log in

An evaluation of fiber orientation and organization in nonwoven fabrics by tensile, air permeability and compression measurements

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three indirect techniques—tensile, compression, and air permeability measurements—have been used to investigate the fiber network organization inside a highly porous nonwoven. They are standard material property measurements that require relatively simple equipment and are hence an interesting alternative to more costly direct analysis methods such as image analysis or X-ray tomography. The tensile measurement provides information on in-plane anisotropy of the nonwoven, through the use of an experimental parameter obtained from the tensile moduli measured in two perpendicular directions. The air permeability and compression analyses are based on existing models that describe the 2D or 3D isotropy. It is also possible to obtain two characteristic lengths that describe the fiber network: the hydrodynamic diameter and the mean distance between fiber junctions. Another important parameter is the fraction of fibers oriented in the thickness direction that could be determined from the permeability data. Our study shows that the observations and results from all three independent techniques are very well correlated for the range of nonwovens studied, and thus provide coherent description and insight of their internal structure. The nonwovens were found to exhibit in-plane anisotropy, while fitting 3D isotropic models in compression and permeability behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chapman R (2010) Applications of nonwovens in technical textiles. Woodhead Publishing Series in Textiles, Cambridge

    Book  Google Scholar 

  2. Pourdeyhimi B, Ramanathan R, Dent R (1996) Text Res J 66(11–12):713

    Article  CAS  Google Scholar 

  3. Pourdeyhimi B, Dent R, Davis H (1997) Text Res J 67(2):143

    CAS  Google Scholar 

  4. Pourdeyhimi B, Dent R, Jerbi A, Tanaka S, Deshpande A (1999) Text Res J 69:185

    Article  Google Scholar 

  5. Pourdeyhimi B, Kim HS (2002) Text Res J 72:803

    Article  CAS  Google Scholar 

  6. Gong RH, Newton A (1996) J Text Inst 87(2):371

    Article  CAS  Google Scholar 

  7. Rawal A, Lomov S, Ngo T, Verpoest I, Vankerrebrouck J (2007) Text Res J 77:417

    Article  CAS  Google Scholar 

  8. Rawal A, Saraswat H (2011) Geotext Geomembr 29:363

    Article  Google Scholar 

  9. Jaganathan S, Vahedi Tafreshi H, Pourdeyhimi B (2008) Chem Eng Sci 63:244

    Article  CAS  Google Scholar 

  10. Faessel M, Delisée C, Bos F, Castéra P (2005) Compos Sci Technol 65:1931

    Article  CAS  Google Scholar 

  11. Lux J, Ahmadi A, Gobbé C, Delisée C (2006) Int J Heat Mass Transf 49:1958

    Article  CAS  MATH  Google Scholar 

  12. Badel E, Delisee C, Lux J (2008) Compos Sci Technol 68:1654

    Article  CAS  Google Scholar 

  13. Tsarouchas D, Markaki AE (2011) Acta Mater 59:6989

    Article  CAS  Google Scholar 

  14. Buffière JY, Maire E, Cloetens P, Lormand G, Fougères R (1999) Acta Mater 47:1613

    Article  Google Scholar 

  15. Wildenschild D, Sheppard A P (2012) X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv Water Resour. doi: http://dx.doi.org/10.1016/j.advwatres.2012.07.018

  16. Jackson GW, James DF (1986) Can J Chem Eng 64(3):364

    Article  CAS  Google Scholar 

  17. Davies CN (1952) Proc Inst Mech Eng 1B:185

    CAS  Google Scholar 

  18. Mao N, Russell SJ (2000) J Text Inst 91(2):235

    Article  Google Scholar 

  19. Mao N, Russell SJ (2000) J Text Inst 91(2):244

    Article  Google Scholar 

  20. Mao N, Russell SJ (2003) Text Res J 73(11):939

    Article  CAS  Google Scholar 

  21. Champoux Y, Allard JF (1991) J Appl Phys 70(4):1975

    Article  ADS  Google Scholar 

  22. van Wyk CM (1946) J Text Inst 37:285

    Article  Google Scholar 

  23. Toll S (1998) Polym Eng Sci 38:1337

    Article  CAS  Google Scholar 

  24. Poquillon D, Viguier B, Andrieu E (2005) J Mater Sci 40:5963. doi:10.1007/s10853-005-5070-1

    Article  CAS  ADS  Google Scholar 

  25. Mezeix L, Bouvet C, Huez J, Poquillon D (2009) J Mater Sci 44(14):3652. doi:10.1007/s10853-009-3483-y

    Article  CAS  ADS  Google Scholar 

  26. Barbier C, Dendievel R, Rodney D (2009) Comp Mater Sci 45:593

    Article  CAS  Google Scholar 

  27. Masse JP, Salvo L, Rodney D, Bréchet Y, Bouaziz O (2006) Scr Mater 54:1379

    Article  CAS  Google Scholar 

  28. Mao N, Russell SJ (2007) In: Russell SJ (ed) Handbook of nonwovens Chapter 9. Woodhead Publishing Series in textiles, Cambridge

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the French Agency ANR for financial support of the MANSART project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Amiot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amiot, M., Lewandowski, M., Leite, P. et al. An evaluation of fiber orientation and organization in nonwoven fabrics by tensile, air permeability and compression measurements. J Mater Sci 49, 52–61 (2014). https://doi.org/10.1007/s10853-013-7323-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7323-8

Keywords

Navigation