Skip to main content
Log in

Mechanical properties of nano-silica particulate-reinforced epoxy composites considered in terms of crosslinking effect in matrix resins

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the mechanical properties of nano-silica particulate-reinforced epoxy composites with different crosslinking densities were clarified experimentally to consider the interaction effects between nano-particles and the network structure in matrix resin. The matrices were prepared by curing with an excessive mixture of diglycidyl ether of bisphenol A type epoxy resin as the curing agent for the stoichiometric condition. The volume fraction of the silica particles with a median diameter of 240 nm was constantly 0.2 for every composite. The crosslinking densities and glass transition temperatures of the neat epoxy resins were identified from thermo-viscoelastic properties measured by dynamic mechanical analysis. Elastic moduli and strengths of the composites and the neat epoxy resins were measured by three-point bending tests. The glass transition temperatures of the neat epoxy resins decreased linearly as the crosslinking densities decreased from the stoichiometric condition. The glass transition temperatures of the composites were reduced by adding the nano-silica particles. The bending moduli of the composites in the glassy state could be predicted by using a mixture law of the composites regardless of the crosslinking densities and glass transition temperatures. The bending strengths were found to be sensitive to the crosslinking densities: they were both higher (for composites with high crosslinking densities) and lower (for composites with low crosslinking densities) than those of the neat epoxy resin. These results demonstrate that the interaction between nano-particles and network structures reduces the bending strengths, especially for low crosslinking densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yamamoto I, Higashihara T, Kobayashi T (2003) JSME Int J 46:145

    Article  CAS  Google Scholar 

  2. Moloney AC, Kausch HH, Stieger HR (1983) J Mater Sci 18:208. doi:10.1007/BF00543827

    Article  CAS  Google Scholar 

  3. Moloney AC, Kausch HH, Kaiser T, Beer HR (1987) J Mater Sci 22:381. doi:10.1007/BF01160743

    Article  CAS  Google Scholar 

  4. Moloney AC, Cantwell WJ, Kausch HH (1987) Polym Compos 8:314

    Article  Google Scholar 

  5. Adachi T, Araki W, Nakahara T, Yamaji A, Gamou M (2002) J Appl Polym Sci 86:2261

    Article  CAS  Google Scholar 

  6. Adachi T, Osaki M, Araki W, Kwon SCh (2008) Acta Mater 56:2101

    Article  CAS  Google Scholar 

  7. Adachi T, Higuchi M, Araki W (2010) Acta Mech 214:61

    Article  Google Scholar 

  8. Nakamura Y, Yamaguchi M, Kitayama A, Okubo M, Matsumoto T (1991) Polymer 32:2221

    Article  CAS  Google Scholar 

  9. Nakamura Y, Yamaguchi M, Okubo M, Matsumoto T (1991) Polymer 32:2976

    Article  CAS  Google Scholar 

  10. Nakamura Y, Yamaguchi M, Okubo M, Matsumoto T (1992) J Appl Polym Sci 45:1281

    Article  CAS  Google Scholar 

  11. Preghenella M, Pegoretti A, Migliaresi C (2006) Polym Test 25:443

    Article  CAS  Google Scholar 

  12. Kitey R, Tippur HV (2005) Eng Frac Mech 72:2721

    Article  Google Scholar 

  13. Butcher RJ, Rousseau CE, Tippur HV (1999) Acta Mater 47:259

    Article  CAS  Google Scholar 

  14. Kwon SCh, Adachi T, Araki W, Yamaji A (2005) Key Eng Mater 297–300:207

    Article  Google Scholar 

  15. Kwon SCh, Adachi T, Araki W, Yamaji A (2006) Acta Mater 54:3369

    Article  CAS  Google Scholar 

  16. Rong MZ, Zhang MQ, Pan SL, Lehmann B, Friedrich K (2004) Polym Int 53:176

    Article  CAS  Google Scholar 

  17. Brechet Y, Cavaille J-YY, Chabert E, Chazeau L, Dendievel R, Flandin L, Gauthier C (2001) Adv Eng Mater 3:571

    Article  CAS  Google Scholar 

  18. Kovacevic V, Lucic S, Leskovac M (2002) J Adhesion Sci 16:1343–1365

    Article  CAS  Google Scholar 

  19. Wingard CD, Beatty CL (1990) J Appl Polym Sci 41:2539

    Article  CAS  Google Scholar 

  20. Palmese GR, McCullough RL (1992) J Appl Polym Sci 46:1863

    Article  CAS  Google Scholar 

  21. d’Almeida JRM, Monteiro SN (1998) Compos Sci Technol 58:1593–1598

    Google Scholar 

  22. Vanlandingham MR, Eduljee RF, Gillespie JW Jr (1999) J Appl Polym Sci 71:699

    Article  CAS  Google Scholar 

  23. Calventus Y, Montserrat S, Hutchinson JM (2001) Polymer 42:7081

    Article  CAS  Google Scholar 

  24. Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang Y (2010) J Mater Chem 20:9635

    Article  CAS  Google Scholar 

  25. Bignotti F, Pandini S, Baldi F, De Santis R (2011) Polym Compos 32:1034

    Article  CAS  Google Scholar 

  26. del Cid MAG, Prolongo MG, Salom C, Arribas C, Sánchez-Cabezudo M, Masegosa RM (2012) J Therm Anal Calorim 108:741

    Article  Google Scholar 

  27. Zhang H, Zhang Z, Friedrich K, Eger C (2006) Acta Mater 54:1833

    Article  CAS  Google Scholar 

  28. Ward IM (1990) Mechanical properties of solid polymers, 2nd edn. Wiley, New York

    Google Scholar 

  29. Yasmin A, Danial IM (2004) Polymer 45:8211

    Article  CAS  Google Scholar 

  30. Lopez J, Ramirez C, Abad MJ, Barral L, Cano J, Diez F (2002) Polym Int 51:1100

    Article  CAS  Google Scholar 

  31. Nikkeshi S, Kudo M, Masuko T (1998) J Appl Polym Sci 69:2593

    Article  CAS  Google Scholar 

  32. Kwon SC, Adachi T, Araki W, Yamaji A (2008) Compos Part B 39:740

    Article  Google Scholar 

  33. Kwon SC, Adachi T, Araki W (2008) Compos Part B 39:773

    Article  Google Scholar 

  34. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites, 2nd edn. Marcel Deckker, New York

    Google Scholar 

  35. Munz M, Sturm H, Stark W (2005) Polymer 46:9097

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadaharu Adachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umboh, M.K., Adachi, T., Oishi, K. et al. Mechanical properties of nano-silica particulate-reinforced epoxy composites considered in terms of crosslinking effect in matrix resins. J Mater Sci 48, 5148–5156 (2013). https://doi.org/10.1007/s10853-013-7300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7300-2

Keywords

Navigation