Skip to main content
Log in

Preparation of carbon-supported PtCo nanoparticle catalysts for the oxygen reduction reaction in polymer electrolyte fuel cells by an electron-beam irradiation reduction method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We prepared carbon-supported PtCo bimetallic nanoparticles (PtCo/C) as electrode catalysts for the oxygen reduction reaction (ORR) at the cathodes in polymer electrolyte membrane fuel cells (PEFCs) by an electron-beam irradiation reduction method (EBIRM). An EBIRM allows nanoparticles to be easily prepared by the reduction of precursor ions in an aqueous solution irradiated with a high-energy electron beam. The structures of PtCo/C were characterized by transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, and the techniques of X-ray diffraction and X-ray absorption near edge structure. It found for the first time that both PtCo alloy and Co oxide were prepared simultaneously on the carbon support by an EBIRM. The catalytic activity and durability of PtCo/C were evaluated by linear-sweep voltammetry and cyclic voltammetry, respectively. The addition of Co to Pt/C not only enhanced the catalytic activity for the ORR but also improved the catalytic durability. As the Co concentration increased, both behaviors became pronounced. These improvements are explained by the effects of both PtCo alloy and Co oxide. We demonstrated that an EBIRM can not only synthesize the alloy and oxide simultaneously on the carbon support but also mass-produce the electrode catalysts for PEFC cathodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Prater KB (1994) J Power Sources 51:129

    Article  CAS  Google Scholar 

  2. Dhathathreyan KS, Sridhar P, Sasikumar G, Ghosh KK, Velayutham G, Rajalakshmi N, Subramaniam CK, Raja M, Ramya K (1999) Int J Hydrogen Energy 24:1107. doi:10.1016/S0360-3199(98)00172-4

    Article  CAS  Google Scholar 

  3. Steele BCH (2001) J Mater Sci 36:1053. doi:10.1023/A:1004853019349

    Article  CAS  Google Scholar 

  4. Brumfiel G (2003) Nature 422:104. doi:10.1038/422104a

    Article  CAS  Google Scholar 

  5. Itsuki H, Fujiwara N, Komiya J, Fujiki H (2008) Int Gas Res Conf Proc 3:2518

    Google Scholar 

  6. Rabis A, Rodriguez P, Schmidt TJ (2012) ACS Catal 2:864. doi:10.1021/cs3000864

    Article  CAS  Google Scholar 

  7. Litster S, McLean G (2004) J Power Sources 130:61. doi:10.1016/j.jpowsour.2003.12.055

    Article  CAS  Google Scholar 

  8. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886. doi:10.1021/jp047349j

    Article  Google Scholar 

  9. Takenaka S, Hirata A, Tanabe E, Matsune H, Kishida M (2010) J Catal 274:228. doi:10.1016/j.jcat.2010.07.005

    Article  CAS  Google Scholar 

  10. Takenaka S, Susuki N, Miyamoto H, Tanabe E, Matsune H, Kishida M (2011) J Catal 279:381. doi:10.1016/j.jcat.2011.02.008

    Article  CAS  Google Scholar 

  11. Antolini E (2004) J Appl Electrochem 34:563. doi:10.1023/B:JACH.0000021923.67264.bb

    Article  CAS  Google Scholar 

  12. Antolini E, Perez J (2011) J Mater Sci 46:4435. doi:10.1007/s10853-011-5499-3

    Article  CAS  Google Scholar 

  13. Jiwei L, Jingxia Q, Miao Y, Chen J (2008) J Mater Sci 43:6285. doi:10.1007/s10853-008-2905-6

    Article  Google Scholar 

  14. Mukerjee S, Srinivasan S (1993) J Electroanal Chem 357:201. doi:10.1016/0022-0728(93)80380-Z

    Article  CAS  Google Scholar 

  15. Mukerjee S, Srinivasan S (1995) J Electrochem Soc 142:1409. doi:10.1149/1.2048590

    Article  CAS  Google Scholar 

  16. Toda T, Igarashi H, Uchida H, Watanabe M (1999) J Electrochem Soc 146:3750. doi:10.1149/1.1392544

    Article  CAS  Google Scholar 

  17. Beard KD, Borrelli D, Cramer AM, Blom D, Van Zee JW, Monnier JR (2009) ACS Nano 3:353. doi:10.1021/nn900214g

    Article  Google Scholar 

  18. Lee MH, Do JS (2009) J Power Sources 188:353. doi:10.1016/j.jpowsour.2008.12.051

    Article  CAS  Google Scholar 

  19. He Q, Mukerjee S (2010) Electrochim Acta 55:1709. doi:10.1016/j.electacta.2009.10.054

    Article  CAS  Google Scholar 

  20. Grolleaua C, Coutanceau C, Pierre F, Leger JM (2010) J Power Sources 195:1569. doi:10.1016/j.jpowsour.2009.09.051

    Article  Google Scholar 

  21. Oezaslan M, Hasché F, Strasser P (2012) J Electrochem Soc 159:B394. doi:10.1149/2.075204jes

    Article  CAS  Google Scholar 

  22. Yamamoto TA, Nakagawa T, Seino S, Nitani H (2010) Appl Catal A Gen 387:195. doi:10.1016/j.apcata.2010.08.020

    Article  CAS  Google Scholar 

  23. Yamamoto TA, Kageyama S, Seino S, Nitani H, Nakagawa T, Horioka R, Honda Y, Ueno K, Daimon H (2011) Appl Catal A Gen 396:68. doi:10.1016/j.apcata.2011.01.037

    Article  CAS  Google Scholar 

  24. Ohkubo Y, Shibata M, Kageyama S, Seino S, Nakagawa T, Kugai J, Yamamoto TA (2011) Mater Lett 65:2165. doi:10.1016/j.matlet.2011.04.023

    Article  CAS  Google Scholar 

  25. Kageyama S, Murakami A, Seino S, Nakagawa T, Daimon H, Yamamoto TA (2012) J Mater Res 27:1037. doi:10.1557/jmr.2012.65

    Article  CAS  Google Scholar 

  26. Belloni J (2006) Catal Today 113:141. doi:10.1016/j.cattod.2005.11.082

    Article  CAS  Google Scholar 

  27. Seino S, Kinoshita T, Nakagawa T, Kojima T, Taniguchi R, Okuda S, Yamamoto TA (2008) J Nanopart Res 10:1071. doi:10.1007/s11051-007-9334-3

    Article  CAS  Google Scholar 

  28. Biegler T, Rand DAJ, Woods R (1971) J Electroanal Chem 29:269

    Article  CAS  Google Scholar 

  29. Crabb EM, Marshall R, Thompsett D (2000) J Electrochem Soc 147:4440. doi:10.1149/1.1394083

    Article  CAS  Google Scholar 

  30. Ravel B, Newville M (2005) J Synchrotron Rad 12:537. doi:10.1107/S0909049505012719

    Article  CAS  Google Scholar 

  31. Newville M (2001) J Synchrotron Rad 8:96. doi:10.1107/S0909049500016290

    Article  CAS  Google Scholar 

  32. Watanabe M, Tryk DA, Wakisaka M, Yano H, Uchida H (2012) Electrochim Acta 84:187. doi:10.1016/j.electacta.2012.04.035

    Article  CAS  Google Scholar 

  33. Shim J, Lee CR, Lee HK, Lee JS, Cairns EJ (2001) J Power Sources 102:172. doi:10.1016/S0378-7753(01)00817-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of EBIS for their assistance with the electron-beam irradiation experiments. We also thank from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant-in-Aid No. 22241023) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Ohkubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohkubo, Y., Hamaguchi, Y., Seino, S. et al. Preparation of carbon-supported PtCo nanoparticle catalysts for the oxygen reduction reaction in polymer electrolyte fuel cells by an electron-beam irradiation reduction method. J Mater Sci 48, 5047–5054 (2013). https://doi.org/10.1007/s10853-013-7292-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7292-y

Keywords

Navigation