Skip to main content
Log in

Isothermal solid–liquid transitions in the (Ni,B)/ZrB2 system as revealed by sessile drop experiments

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the framework of joining processes of ultrahigh temperature ceramics (UHTCs), sessile drop experiments were performed in the Ni–B/ZrB2 system in the range 1110° ≤ T ≤ 1200 °C. They show that, at temperatures between 1110 and 1150 °C, isothermal solid–liquid transitions occur in a sequence; while in fact at T ≥ 1200 °C, the drop melts without any further phase transition, at lower temperatures, complete melting is followed by a solidification stage and final remelting. This complex behavior, which can be very relevant when utilizing Ni–B alloys for brazing processes (e.g., by the transient liquid phase bonding technique), is successfully interpreted on the basis of the complete B–Ni–Zr phase diagram newly computed by CALPHAD: Isothermal sections, calculated between 1110 and 1150 °C, show that the composition of the drop enters, crosses, and leaves the primary solidification region of the Zr2Ni21B6 ternary compound. The use of thermodynamic modeling for the explanation of experimental data sets a link between wetting and joining experiments and phase diagrams assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fernie J, Drew R, Knowles K (2009) Int Mater Rev 54:283

    Article  CAS  Google Scholar 

  2. Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA (2007) J Am Ceram Soc 90:1347

    Article  CAS  Google Scholar 

  3. Munro RG (2000) J Res NIST 105:709

    Article  CAS  Google Scholar 

  4. Opeka MM, Talmy IG, Zaykoski JA (2004) J Mater Sci 39:1347. doi:10.1023/B:JMSC.0000041686.21788.77

    Article  Google Scholar 

  5. Van Wie DM, Drewry DG Jr, King DE, Hudson CM (2004) J Mater Sci 39:5915. doi:10.1023/B:JMSC.0000041688.68135.8b

    Article  Google Scholar 

  6. Monteverde F, Bellosi A, Scatteia L (2008) Mater Sci Eng A 485:415

    Article  Google Scholar 

  7. Saito N, Ikeda H, Yamaoka Y, Glaeser AM, Nakashima K (2012) J Mater Sci 47:8454. doi:10.1007/s10853-012-6778-3

    Article  CAS  Google Scholar 

  8. Aizenshtein M, Frage N, Froumin N, Shapiro-Tsoref E, Dariel MP (2006) J Mater Sci 41:5185. doi:10.1007/s10853-006-0436-6

    Article  CAS  Google Scholar 

  9. Singh M, Asthana R (2010) J Mater Sci 45:4308. doi:10.1007/s10853-010-4510-8

    Article  CAS  Google Scholar 

  10. Passerone A, Muolo ML, Novakovic R, Passerone D (2007) J Eur Ceram Soc 27:3277

    Article  CAS  Google Scholar 

  11. Muolo ML, Ferrera E, Novakovic R, Passerone A (2003) Scripta Mater 48:191

    Article  CAS  Google Scholar 

  12. Valenza F, Artini C, Passerone A, Muolo ML (2012) J Mater Sci 47:8439. doi:10.1007/s10853-012-6790-7

    Article  CAS  Google Scholar 

  13. Valenza F, Muolo ML, Passerone A, Cacciamani G, Artini C (2012) J Mater Eng Perform 21:660

    Article  CAS  Google Scholar 

  14. Passerone A, Muolo ML, Valenza F, Kaufman L (2010) CALPHAD 34:6

    Article  CAS  Google Scholar 

  15. Passerone A, Muolo ML, Valenza F, Monteverde F, Sobczak N (2009) Acta Mater 57:356

    Article  CAS  Google Scholar 

  16. Yuan B, Zhang GJ (2011) Scripta Mater 64:17

    Article  CAS  Google Scholar 

  17. Cacciamani G, Riani P, Valenza F (2011) CALPHAD 35:601

    Article  CAS  Google Scholar 

  18. Kaufman L, Cacciamani G, Muolo ML, Valenza F, Passerone A (2010) CALPHAD 34:2

    Article  CAS  Google Scholar 

  19. Gumeniuk R, Prots Y, Schnelle W, Leithe-Jasper A (2008) Z Kristallogr 223:327

    CAS  Google Scholar 

  20. Lugscheider E, Reimann H, Pankert P (1982) Metallwissenschaft und Technik 36:247

    CAS  Google Scholar 

  21. Monteverde F, Guicciardi S, Bellosi A (2003) Mater Sci Eng A 346:310

    Article  Google Scholar 

  22. Monteverde F, Bellosi A (2002) Scripta Mater 46:223

    Article  CAS  Google Scholar 

  23. Zamora V, Ortiz AL, Guiberteau F, Nygren M (2012) J Eur Ceram Soc 32:2529

    Article  CAS  Google Scholar 

  24. Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Pergamon Materials Series. Elsevier, Oxford

    Google Scholar 

  25. Valenza F, Muolo ML, Passerone A (2010) J Mater Sci 45:2071. doi:10.1007/s10853-009-3801-4

    Article  CAS  Google Scholar 

  26. Liggieri L, Passerone A (1989) High Temp Technol 7:82

    CAS  Google Scholar 

  27. Ganglberger E, Nowotny H, Benesovsky F (1965) Monatsh Chem 96:1144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. P. Manfrinetti (DCCI, the University of Genoa) and Mr. A. Risplendente (Department of Earth Sciences, the University of Milan) are acknowledged for their help in preparing alloys and performing WDS analyses. The authors wish to thank Mr. Francesco Mocellin (CNR-IENI) for his technical support. This work was part of the Project “JoinHT” funded by the “CARIPLO Funding Scheme—2010.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Artini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 2222 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artini, C., Muolo, M.L., Passerone, A. et al. Isothermal solid–liquid transitions in the (Ni,B)/ZrB2 system as revealed by sessile drop experiments. J Mater Sci 48, 5029–5035 (2013). https://doi.org/10.1007/s10853-013-7290-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7290-0

Keywords

Navigation