Skip to main content
Log in

Tensile properties of high strength polyacrylonitrile (PAN)-based and high modulus pitch-based hybrid carbon fibers-reinforced epoxy matrix composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tensile properties of high strength polyacrylonitrile-based (IM600) and high modulus pitch-based (K13D) hybrid carbon fibers-reinforced epoxy matrix composite (CFRP) were investigated. Fiber orientation of the hybrid CFRP specimen was set to [0(IM600)/0(K13D)]2S. The fiber volume fraction of the hybrid CFRP specimen was 55.7 vol% (IM600: 29.3 vol%, K13D: 26.4 vol%). The tensile stress–strain curve of the hybrid CFRP specimen shows a complicated shape (jagged trace). By the high modulus K13D CFRP layers, the hybrid CFRP specimen shows the intermediate modulus in the initial stage of loading. Subsequently, when the K13D CFRP layers begin to fail, the high strength IM600 CFRP layers would hold the load (strength) and the material continues to endure high load without instantaneous failure. Because higher strength fiber can help the load for a certain time after failure occur, the hybrid composite could be considered one example of a material possessing preventing instantaneous failure. The Weibull statistical distributions of the mono (IM600 and K13D) and the hybrid CFRP specimens were also examined. The Weibull modulus for the mono CFRP specimens was calculated to be 22.9 for the IM600 CFRP specimen and 14.4 for the K13D CFRP specimen, respectively. The Weibull modulus for the hybrid CFRP specimen was calculated to be 39.6 for the initial fracture strength and 20.6 for the tensile fracture strength, respectively. The Weibull modulus for the initial fracture strength is higher than that for the K13D CFRP specimen and the Weibull modulus for the tensile fracture strength is almost similar to that for the IM600 CFRP specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The cure cycle is 1 ºC/min for 2 h 37 min (from 23 to 180 ºC) and then 4 h at 180 ºC.

References

  1. Fitzer E (1989) Carbon 27(5):621. doi:10.1016/0008-6223(89)90197-8

    Article  Google Scholar 

  2. Chand S (2000) J Mater Sci 35(6):1303. doi:10.1023/A:1004780301489

    Article  CAS  Google Scholar 

  3. Rosa LG, Colella A, Anjinho CA (2006) Mater Sci Forum 514–516:672. doi:10.4028/www.scientific.net/MSF.514-516.672

    Article  Google Scholar 

  4. Bunsell AR, Harris B (1974) Composites 5(4):157. doi:10.1016/0010-4361(74)90107-4

    Article  Google Scholar 

  5. Summerscales J, Short D (1978) Composites 9(3):157. doi:10.1016/0010-4361(78)90341-5

    Article  Google Scholar 

  6. Aveston J, Kelly A (1980) Philos T R Soc A 294(1411):519. doi:10.1098/rsta.1980.0061

    Article  CAS  Google Scholar 

  7. Short D, Summerscales J (1984) Composites 15(3):200. doi:10.1016/0010-4361(84)90275-1

    Article  CAS  Google Scholar 

  8. Hayashi T, Koyama K, Yamazaki A, Kihira M (1972) Fukugo Zairyo (composite materials) 1:21–25

    Google Scholar 

  9. Short D, Summerscales J (1979) Composites 10(4):215. doi:10.1016/0010-4361(79)90022-3

    Article  Google Scholar 

  10. Short D, Summerscales J (1980) Composites 11(1):33. doi:10.1016/0010-4361(80)90019-1

    Article  CAS  Google Scholar 

  11. Hardaker KM, Richardson MOW (1980) Polym-Plast Technol 15(2):169. doi:10.1080/03602558008070011

    Article  CAS  Google Scholar 

  12. Chow TW, Kelly A (1980) Ann Rev Mater Sci 10:229. doi:10.1146/annurev.ms.10.080180.001305

    Article  Google Scholar 

  13. Manders PW, Bader MG (1981) J Mater Sci 16(8):2233. doi:10.1007/BF00542386

    Article  CAS  Google Scholar 

  14. Morgan P (2005) In: Morgan P (ed) Carbon fibers and their composites. Taylor, New York, p 791

    Chapter  Google Scholar 

  15. Huang Y, Young RJ (1995) Carbon 33(2):97. doi:10.1016/0008-6223(94)00109-D

    Article  CAS  Google Scholar 

  16. Paiva MC, Bernardo CA, Nardin M (2000) Carbon 38(9):1323. doi:10.1016/S0008-6223(99)00266-3

    Article  CAS  Google Scholar 

  17. Paris O, Loidl D, Peterlik H (2002) Carbon 40(4):551. doi:10.1016/S0008-6223(01)00139-7

    Article  CAS  Google Scholar 

  18. Naito K, Tanaka Y, Yang JM, Kagawa Y (2008) Carbon 46(2):189. doi:10.1016/j.carbon.2007.11.001

    Article  CAS  Google Scholar 

  19. Naito K (2010) In: Takahashi A (ed) Impregnation ability of resin for carbon fiber reinforced polymer matrix composite and reliability assessment in Japanese. Gijutu-Joho-Kyokai, Tokyo, p 34

    Google Scholar 

  20. Naito K, Yang JM, Tanaka Y, Kagawa Y (2011) J Mater Sci in accepted. doi:10.1007/s10853-011-5832-x

  21. Marom G, Fischer S, Tuler FR, Wagner HD (1978) J Mater Sci 13(7):1419. doi:10.1007/BF00553194

    Article  CAS  Google Scholar 

  22. Stevanovic MM, Stecenko TB (1992) J Mater Sci 27(4):941. doi:10.1007/BF01197646

    Article  CAS  Google Scholar 

  23. Yao L, Li WB, Wang N, Li W, Guo X, Qiu YP (2007) J Mater Sci 42(16):6494. doi:10.1007/s10853-007-1534-9

    Article  CAS  Google Scholar 

  24. Kretsis G (1987) Composites 18(1):13. doi:10.1016/0010-4361(87)90003-6

    Article  CAS  Google Scholar 

  25. You YJ, Park YH, Kim HY, Park JS (2007) Comps Struct 80(1):117. doi:10.1016/j.compstruct.2006.04.065

    Article  Google Scholar 

  26. Zweben C (1977) J Mater Sci 12(7):1325. doi:10.1007/BF00540846

    Article  CAS  Google Scholar 

  27. Manders PW, Bader MG (1981) J Mater Sci 16(8):2246. doi:10.1007/BF00542387

    Article  Google Scholar 

  28. Fukunaga H, Chou TW, Fukuda H (1989) Compos Sci Technol 35(4):331. doi:10.1016/0266-3538(89)90056-0

    Article  Google Scholar 

  29. Qiu YP, Schwartz P (1993) Compos Sci Technol 47(3):289. doi:10.1016/0266-3538(93)90037-H

    Article  CAS  Google Scholar 

  30. Jones KD, Dibenedetto AT (1994) Compos Sci Technol 51(1):53. doi:10.1016/0266-3538(94)90156-2

    Article  CAS  Google Scholar 

  31. Fukuda H (1984) J Mater Sci 19(3):974. doi:10.1007/BF00540468

    Article  CAS  Google Scholar 

  32. Hedgepeth JM (1961) Stress concentrations in filamentary structures. NASA TN D-882

  33. Aveston J, Sillwood JM (1976) J Mater Sci 11(10):974. doi:10.1007/BF00708266

    Article  Google Scholar 

  34. Budiansky B, Hutchinson JW, Evans AG (1986) J Mech Phys Solids 34(2):167. doi:10.1016/0022-5096(86)90035-9

    Article  Google Scholar 

  35. Kazmin VI, Mileiko ST, Tvardovsky VV (1990) Compos Sci Technol 38(1):69. doi:10.1016/0266-3538(90)90072-D

    Article  CAS  Google Scholar 

  36. Weibull W (1951) J Appl Mech 18:293

    Google Scholar 

  37. Irwin GR (1957) J Appl Mech 24:361

    Google Scholar 

  38. Benzeggagh ML, Gong XJ, Laksimi A, Roelandt JM (1991) Polym Eng Sci 31(17):1286. doi:10.1002/pen.760311709

    Article  CAS  Google Scholar 

  39. Hwang SF, Shen BC (1999) Compos Sci Technol 59(12):1861. doi:10.1016/S0266-3538(99)00047-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimiyoshi Naito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naito, K., Yang, JM. & Kagawa, Y. Tensile properties of high strength polyacrylonitrile (PAN)-based and high modulus pitch-based hybrid carbon fibers-reinforced epoxy matrix composite. J Mater Sci 47, 2743–2751 (2012). https://doi.org/10.1007/s10853-011-6101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6101-8

Keywords

Navigation