Skip to main content
Log in

Synthesis and photocatalytic performance of the electrospun Bi2Fe4O9 nanofibers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bi2Fe4O9 nanofibers were successfully synthesized by an electrospinning method combined with a sol–gel process. The as-spun nanofibers were annealed at different temperatures ranging from 500 to 700 °C and a pure orthorhombic phase was obtained at 700 °C. The thermo-decomposition behavior, structure, morphology, optical property, and the specific surface area of the nanofibers were characterized by thermogravimetry and differential scanning calorimetry, X-ray diffraction, field emission scanning electron microscopy, UV-vis diffuse reflectance spectroscopy and photoluminescene spectroscopy, and specific surface analyzer, respectively. The results indicated that the diameter and morphology of the fiber changed with different calcination temperatures. Moreover, the results of UV-vis diffuse reflectance spectroscopy revealed that the Bi2Fe4O9 nanofiber could be a photocatalyst under a visible light irradiation and the bandgap value was determined to be 2.1 eV based on the Kubelka–Munk theory. The photocatalytic activity of the obtained nanofibers was evaluated by the degradation of methyl orange. A favorable degradation rate of 45 % was obtained for the sample annealed at 600 °C under the illumination of visible light for 3 h and an enhanced efficiency up to 70 % with recycling stability could be obtained with the aid of H2O2 for the pure-phase sample annealed at 700 °C. These results demonstrated that the electrospun Bi2Fe4O9 nanofibers could be a promising visible light photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69

    Article  CAS  Google Scholar 

  2. Chen XB, Mao SS (2007) Chem Rev 107:2891

    Article  CAS  Google Scholar 

  3. Wu TX, Liu GM, Zhao JC, Hidaka H, Serpone N (1998) J Phys Chem B 102:5845

    Article  CAS  Google Scholar 

  4. Wu TX, Liu GM, Zhao JC, Hidaka H, Serpone N (1999) J Phys Chem B 103:4862

    Article  CAS  Google Scholar 

  5. Zhao W, Chen CC, Li XZ, Zhao JC, Hidaka H, Serpone N (2002) J Phys Chem B 106:5022

    Article  CAS  Google Scholar 

  6. Xin YJ, Liu HL, Han L (2011) J Mater Sci 46:7822. doi:10.1007/s10853-011-5763-6

    Article  CAS  Google Scholar 

  7. Sakthivel S, Kisch H (2003) Angew Chem Int Ed 42:4908

    Article  CAS  Google Scholar 

  8. Wei HY, Wu YS, Lun N, Zhao F (2004) J Mater Sci 39:1305. doi:10.1023/B:JMSC.0000013889.63705.f3

    Article  CAS  Google Scholar 

  9. Tang JW, Zou ZG, Ye JH (2004) Angew Chem Int Ed 43:4463

    Article  CAS  Google Scholar 

  10. Gao F, Chen XY, Yin KB, Dong S, Ren ZF, Yuan F, Yu T, Zou ZG, Liu JM (2007) Adv Mater 19:2889

    Article  CAS  Google Scholar 

  11. Finlayson AP, Tsaneva VN, Lyons L, Clark M, Glowacki BA (2006) Phys Stat Sol A 203:327

    Article  CAS  Google Scholar 

  12. Luo JH, Maggard PA (2006) Adv Mater 18:514

    Article  CAS  Google Scholar 

  13. Poghossian AS, Abovian HV, Avakian PB, Mkrtchian SH, Haroutunian VM (1991) Sensor Actuat B-Chem 4:545

    Article  Google Scholar 

  14. Zakharchenko NI (2002) Kinet Catal 43:95

    Article  CAS  Google Scholar 

  15. Xiong Y, Wu MZ, Peng ZM, Jiang N, Chen QW (2004) Chem Lett 33:502

    Article  CAS  Google Scholar 

  16. Park TJ, Papaefthymiou GC, Moodenbaugh AR, Mao YB, Wong SS (2005) J Mater Chem 15:2099

    Article  CAS  Google Scholar 

  17. Singh AK, Kaushik SD, Kumar B, Mishra PK, Venimadhav A, Siruguri V, Patnaik S (2008) Appl Phys Lett 92:132910

    Article  Google Scholar 

  18. Ressouche E, Simonet V, Canals B, Gospodinov M, Skumryev V (2009) Phys Rev Lett 103:267204

    Article  CAS  Google Scholar 

  19. Tian ZM, Qiu Y, Yuan SL, Wu MS, Huo SX, Duan HN (2010) J Appl Phys 108:064110

    Article  Google Scholar 

  20. Ruan QJ, Zhang WD (2009) J Phys Chem C 113:4168

    Article  CAS  Google Scholar 

  21. Sun SM, Wang WZ, Zhang L, Shang M (2009) J Phys Chem C 113:12826

    Article  CAS  Google Scholar 

  22. Zhang M, Yang H, Xian T, Wei ZQ, Jiang JL, Feng YC, Liu XQ (2011) J Alloy Compd 509:809

    Article  CAS  Google Scholar 

  23. Zhang XY, Lv J, Bourgeois L, Cui JW, Wu YC, Wang HT, Webley PA (2011) New J Chem 35:937

    Article  CAS  Google Scholar 

  24. Zhang Q, Gong WJ, Wang JH, Ning XK, Wang ZH, Zhao XG, Ren WJ, Zhang ZD (2011) J Phys Chem C 115:25241

    Article  CAS  Google Scholar 

  25. Liu ZS, Wu BT, Yin DG, Zhu YB, Wang LG (2012) J Mater Sci 47:6777. doi:10.1007/s10853-012-6600-2

    Article  CAS  Google Scholar 

  26. Zhao JY, Liu T, Xu YB, He YY, Chen WP (2011) Mater Chem Phys 128:388

    Article  CAS  Google Scholar 

  27. Liu T, Xu YB, Zeng CL (2011) Mat Sci Eng B 176:535

    Article  CAS  Google Scholar 

  28. Wang YG, Xu G, Yang LL, Ren ZH, Wei X, Weng WJ, Du PY, Shen G, Han GR (2007) J Am Ceram Soc 90:3673

    Article  CAS  Google Scholar 

  29. Yang Z, Huang Y, Dong B, Li HL, Shi SQ (2006) J Solid State Chem 179:3324

    Article  CAS  Google Scholar 

  30. Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) J App Phys 102:111101

    Article  Google Scholar 

  31. Greiner A, Wendorff JH (2007) Angew Chem Int Ed 46:5670

    Article  CAS  Google Scholar 

  32. Li D, Xia YN (2004) Adv Mater 16:1151

    Article  CAS  Google Scholar 

  33. Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J, Teo WE (2009) J Mater Sci 45:6283. doi:10.1007/s10853-010-4509-1

    Article  Google Scholar 

  34. Kim HK, Honda W, Kim BS, Kim IS (2013) J Mater Sci 48:1111. doi:10.1007/s10853-012-6843-y

    Article  CAS  Google Scholar 

  35. Zhang W, Li HP, Pan W (2012) J Mater Sci 47:8216. doi:10.1007/s10853-012-6717-3

    Article  CAS  Google Scholar 

  36. Zhang XW, Xu SY, Han GR (2009) Mater Lett 63:1761. doi:10.1007/s10853-006-0241-2

    Article  CAS  Google Scholar 

  37. Nakane K, Shimada N, Ogihara T, Ogata N, Yamaguchi S (2007) J Mater Sci 42:4031. doi:10.1007/s10853-008-3201-1

    Article  CAS  Google Scholar 

  38. Chandrasekar R, Zhang LF, Howe JY, Hedin NE, Zhang Y, Fong H (2009) J Mater Sci 44:1198

    Article  CAS  Google Scholar 

  39. Hu GJ, Meng XF, Feng XY, Ding YF, Zhang SM, Yang MS (2007) J Mater Sci 42:7162. doi:10.1007/s10853-007-1609-7

    Article  CAS  Google Scholar 

  40. Barakat NAM (2012) J Mater Sci 47:6237. doi:10.1007/s10853-012-6543-7

    Article  CAS  Google Scholar 

  41. Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng YH (2006) Appl Catal B-Environ 68:1

    Article  CAS  Google Scholar 

  42. Chiu SC, Li YY (2009) J Cryst Growth 311:1036

    Article  CAS  Google Scholar 

  43. Qi SS, Zuo RZ, Liu Y, Wang Y (2013) Mater Res Bull 48:1213

    Article  CAS  Google Scholar 

  44. Bell AT (2003) Science 299:1688

    Article  CAS  Google Scholar 

  45. Du WP, Xu YM, Wang YS (2008) Langmuir 24:175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by a project of Natural Science Foundation of Anhui Province (1108085J14) and the National Natural Science Foundation of China (50972035 and 51272060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruzhong Zuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, S., Zuo, R., Wang, Y. et al. Synthesis and photocatalytic performance of the electrospun Bi2Fe4O9 nanofibers. J Mater Sci 48, 4143–4150 (2013). https://doi.org/10.1007/s10853-013-7227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7227-7

Keywords

Navigation