Skip to main content

Advertisement

Log in

Effect of upset forging on microstructure and tensile properties in a devitrified Al–Ni–Co–Y Alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Devitrified Al—transition metal—rare earth alloys offer routes to obtain higher volume fractions of dispersed strengthening phases than conventional precipitation routes. Here, we report a study of the microstructure–property relationships of an Al–Ni–Co–Y alloy processed by gas atomization and consolidated/devitrified by warm extrusion. Microstructural characterization by electron microscopy and serial section FIB tomography show that the alloy comprises an FCC Al matrix and 44 % by volume of elongated Al19(Ni,Co)5Y3 plates with the Al19Ni5Gd3 structure. The plates are aligned with the extrusion direction in the as-extruded alloy, and tensile data show a distinct anisotropy in yield strength and strain to failure. These data are consistent with the alloy acting more like a unidirectional short-fiber-reinforced metal–matrix composite than a conventional precipitation-hardened alloy. During axial upset forging, the ternary plates do not break up, but instead they rotate, until at large upset strains they lie perpendicular to their original orientation with corresponding changes in the tensile properties. The materials exhibit yield strengths of up to 713 MPa and tensile elongations of up to 5 %. Thus, such systems could form the basis for truly deformable high-strength low-density metal–matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The high-temperature hexagonal Pb3Ba-type polymorph is used here in preference to the cubic Cu3Au-type [40] or the hexagonal Ni3Sn-type [39] polymorphs because the former is the one observed experimentally in our previous work on such alloys [27].

References

  1. Gholinia A, Prangnell PB, Markushev MV (2000) Acta Mater 48:1115

    Article  CAS  Google Scholar 

  2. Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) J Mater Sci 36:2835. doi:10.1023/A:1017932417043

    Article  CAS  Google Scholar 

  3. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  4. Zhilyaev AP, McNelley TR, Langdon TG (2007) J Mater Sci 42:21517. doi:10.1007/s10853-006-0628-0

    Article  Google Scholar 

  5. Gao N, Wang CT, Wood RJK, Langdon TG (2012) J Mater Sci 47:4779. doi:10.1007/s10853-011-6231-z

    Article  CAS  Google Scholar 

  6. Norman AF, Prangnell PB, McEwen RS (1998) Acta Mater 46:5715

    Article  CAS  Google Scholar 

  7. Marquis EA, Seidman DN (2001) Acta Mater 49:1909

    Article  CAS  Google Scholar 

  8. Novotny GM, Ardell AJ (2001) Mater Sci Eng A 318:144

    Article  Google Scholar 

  9. Royset J, Ryum N (2005) Int Mater Rev 50:19

    Article  CAS  Google Scholar 

  10. Belov NA, Alabin AN, Eskin DG, Istomin-Kastrovskii VV (2006) J Mater Sci 41:5890. doi:10.1007/s10853-006-0265-7

    Article  CAS  Google Scholar 

  11. Wang RN, Zeng MX, Chen XJ, Mo ZS, Tang BY, Peng LM, Ding WJ (2012) J Mater Sci 47:3793. doi:10.1007/s10853-011-6233-x

    Article  CAS  Google Scholar 

  12. He Y, Poon SJ, Shiflet GJ (1988) Science 241:1640

    Article  CAS  Google Scholar 

  13. Chen H, He Y, Shiflet GJ, Poon SJ (1991) Scr Metal Mater 25:1421

    Article  CAS  Google Scholar 

  14. Greer AL (1995) Science 267:1947

    Article  CAS  Google Scholar 

  15. Battezzati L, Kusy M, Rizzi P, Ronto V (2004) J Mater Sci 39:3927. doi:10.1023/B:JMSC.0000031473.19334.5b

    Article  CAS  Google Scholar 

  16. Suryanarayana C, Klassen T, Ivanov E (2011) J Mater Sci 46:6301. doi:10.1007/s10853-011-5287-0

    Article  CAS  Google Scholar 

  17. Inoue A, Nakamura T, Sugita T, Zhang T, Masumoto T (1993) Mater Trans JIM 34:351

    CAS  Google Scholar 

  18. Calin M, Koster U (1998) Mater Sci Forum 269–272:749

    Article  Google Scholar 

  19. Allen DR, Foley JC, Perepezko JH (1998) Acta Mater 46:431

    Article  CAS  Google Scholar 

  20. Gangopadhyay AK, Kelton KF (2000) Philos Mag A 80:1193

    Article  CAS  Google Scholar 

  21. Rykhal RM, Zarechnyuk OS (1977) Dopov Acad Nauk Ukr SSR A4:375

    Google Scholar 

  22. Latuch J, Matyja H, Fadeeva VI (1994) Mater Sci Eng A 179:506

    Article  Google Scholar 

  23. Bassim N, Kiminami CS, Kaufman MJ (2000) J Non Cryst Solids 273:271

    Article  CAS  Google Scholar 

  24. Abrosimova GE, Aronin AS, Zver’kova II, Kir’yanov YV (2002) Phys Metal Metallogr 94:102

    Google Scholar 

  25. Gibson MA, Bettles CJ (2002) Mater Lett 57:982

    Article  CAS  Google Scholar 

  26. Raggio R, Borzone G, Ferro R (2000) Intermetallics 8:247

    Article  CAS  Google Scholar 

  27. Vasiliev AL, Aindow M, Blackburn MJ, Watson TJ (2004) Intermetallics 12:349

    Article  CAS  Google Scholar 

  28. Gladyshevskii RE, Cenzual K, Parthé E (1992) J Solid State Chem 100:9

    Article  CAS  Google Scholar 

  29. Raghavan V (2010) J Phase Equilib Diffus 31:57

    Article  CAS  Google Scholar 

  30. Magdefrau NJ, Vasiliev AL, Aindow M, Blackburn MJ, Watson TJ (2004) Scripta Mater 51:485

    Article  CAS  Google Scholar 

  31. Vasiliev AL, Aindow M, Blackburn MJ, Watson TJ (2005) Scripta Mater 52:699

    Article  CAS  Google Scholar 

  32. Vasiliev AL, Aindow M, Blackburn MJ, Watson TJ (2005) Intermetallics 13:741

    Article  CAS  Google Scholar 

  33. Vasiliev AL, Aindow M, Blackburn MJ, Watson TJ (2003) Mater Res Soc Symp Proc 754:CC11.7

    Article  Google Scholar 

  34. Vasiliev AL, Aindow M, Blackburn MJ, Watson TJ (2004) Mater Res Soc Symp Proc 806:MM2.11

    Article  Google Scholar 

  35. Vasiliev AL, Aindow M, Blackburn MJ, Watson TJ (2004) Mater Res Soc Symp Proc 806:MM5.9

    Article  Google Scholar 

  36. Vasiliev AL, Aindow M, Blackburn MJ, Watson TJ (2004) Mater Res Soc Symp Proc 806:MM5.10

    Article  Google Scholar 

  37. Vasiliev AL, Aindow M (2008) AIP Conf Proc 999:257

    Article  CAS  Google Scholar 

  38. Golumbfskie WJ, Prinsa SN, Eden TJ, Liu Z-K (2009) Calphad 33:124

    Article  CAS  Google Scholar 

  39. Bailey DM (1967) Acta Cryst 23:729

    Article  CAS  Google Scholar 

  40. Dagerhamn T (1967) Ark Kemi 27:363

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Pratt & Whitney. The authors would like to thank Perry Harovas at the University of Connecticut Digital Media Center for assistance with rendering of the tomographic reconstructions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aindow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordillo, M.A., Zhang, L.C., Watson, T.J. et al. Effect of upset forging on microstructure and tensile properties in a devitrified Al–Ni–Co–Y Alloy. J Mater Sci 48, 3841–3851 (2013). https://doi.org/10.1007/s10853-013-7185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7185-0

Keywords

Navigation