Skip to main content
Log in

Effect of synthesis methods for mesoporous zirconia on its structural and textural properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zirconia was synthesized by sol–gel and post-hydrothermal treatment under autogenous pressure in order to study the effect of synthesis methods on its structural and textural properties. On the basis of thermal analysis, in situ X-ray diffraction and Raman spectroscopy techniques, the synthesis processes exhibit similar thermal behavior and zirconia phase transformation. The effect of in situ calcination temperature on the crystallization behavior, crystal phase transition, and crystallite size analysis was studied. The results obtained revealed that amorphous zirconia transformed into tetragonal phase above 400 °C and thermally stabilized up to 700 °C. A biphasic mixture of tetragonal and monoclinic zirconia was formed at 750 °C. Activation energy of sintering due to grain growth mechanism predicted that the zirconia phase transformation is due to the increase in the crystallite size of tetragonal phase above its critical size. The post-hydrothermal treatment resulted in the formation of high surface area mesoporous zirconia (213 m2 g−1). Upon increasing the calcination temperature, a pronounced decrease in the specific surface area of zirconia samples due to sintering process and phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hoek A, Minderhout JK, Post MFM, Lednor PW (1984) Process for the preparation of a Fischer–Tropsch catalyst, a catalyst so prepared and use of this catalyst in the preparation of hydrocarbons. EP 0110449, 13 June

  2. Chigapov AN, Graham GW, Gandhi HS, Jen HW (2007) US Patent 7,229,948, 12 June 2007

  3. Matsuzawa K (2001) US Patent 6,326,328, 4 Dec 2001

  4. Skovgaard M, Almdal K, van Lelieveld A (2011) J Mater Sci 46:1824. doi:10.1007/s10853-010-5007-1

    Article  CAS  Google Scholar 

  5. Cimino S, Pirone R, Lisi L (2002) Appl Catal B 35:243. doi:10.1016/S0926-3373(01)00262-4

    Article  CAS  Google Scholar 

  6. Yamaguchi T (1994) Catal Today 20:199. doi:10.1016/0920-5861(94)80003-0

    Article  CAS  Google Scholar 

  7. Gandhi HS (1998) US Patent 4-806-519, 21 Feb

  8. Duchet JC, Tilliete MJ, Cornet D (1991) Catal Today 10:507. doi:10.1016/0920-5861(91)80036-9

    Article  CAS  Google Scholar 

  9. Gopalan R, Chang CH, Lin YS (1995) J Mater Sci 30:3075. doi:10.1007/BF01209219

    Article  CAS  Google Scholar 

  10. Mercera PDL, Van Ommen JG, Doesburg EBM, Burggraaf AJ, Ross JRH (1991) Appl Catal A 71:363. doi:10.1016/0166-9834(91)85092-A

    Article  CAS  Google Scholar 

  11. Yan QZ, Su XT, Huang ZY, Ge CC (2006) J Eur Ceram Soc 26:915. doi:10.1016/j.jeurceramsoc.2004.11.017

    Article  CAS  Google Scholar 

  12. Hwang SM, Park GC, Lim JH, Joo J (2012) J Mater Sci 47:5216. doi:10.1007/s10853-012-6405-3

    Article  CAS  Google Scholar 

  13. Torres-Huerta AM, Dominguez-Crespo MA, Onofre-Bustamante E, Flores-Vela A (2012) J Mater Sci 47:2300. doi:10.1007/s10853-011-6044-0

    Article  CAS  Google Scholar 

  14. Gao P, Meng LJ, Dos Santos MP, Teixeira V, Andritschky M (2000) Thin Solid Films 377:32. doi:10.1016/S0040-6090(00)01395-X

    Article  Google Scholar 

  15. Garvie RC (1965) J Phys Chem 69:1238. doi:10.1021/j100888a024

    Article  CAS  Google Scholar 

  16. Garvie RC (1978) J Phys Chem 82:218. doi:10.1021/j100491a016

    Article  CAS  Google Scholar 

  17. Murase Y, Kato E (1979) J Am Ceram Soc 62:527. doi:10.1111/j.1151-2916.1979.tb19121.x

    Article  CAS  Google Scholar 

  18. Murase Y, Kato E (1983) J Am Ceram Soc 66(3):196. doi:10.1111/j.1151-2916.1983.tb10016.x

    Article  CAS  Google Scholar 

  19. Livage J, Doi K, Mazieres C (1968) J Am Ceram Soc 51:349. doi:10.1111/j.1151-2916.1968.tb15952.x

    Article  CAS  Google Scholar 

  20. Mitsuhashi T, Ichihara M, Tatsukc U (1974) J Am Ceram Soc 57:97. doi:10.1111/j.1151-2916.1974.tb10823.x

    Article  Google Scholar 

  21. Osendi MI, Moya JS, Serna CJ, Soria J (1985) J Am Ceram Soc 68:135. doi:10.1111/j.1151-2916.1985.tb09651.x

    Article  CAS  Google Scholar 

  22. Tani E, Yoshimura M, Somiya S (1983) J Am Ceram Soc 66(l):11. doi:10.1111/j.1151-2916.1983.tb09958.x

    Article  CAS  Google Scholar 

  23. Feng RM, Yang XJ, Ji WJ, Au CT (2008) Mater Chem Phys 107(1):132. doi:10.1016/j.matchemphys.2007.06.055

    Article  CAS  Google Scholar 

  24. Kaya C, He JY, Gu X, Butler EG (2002) Microporous Mesoporous Mater 54:37. doi:10.1016/S1387-1811(02)00334-7

    Article  CAS  Google Scholar 

  25. Wan Y, Ma JX, Zhou W, Zhu YJ, Song XY, Li HX (2004) Appl Catal A 277:55. doi:10.1016/j.apcata.2004.08.022

    Article  CAS  Google Scholar 

  26. Hung IM, Hung DT, Fung KZ, Hon MH (2006) J Eur Ceram Soc 26:2627. doi:10.1016/j.jeurceramsoc.2005.07.069

    Article  CAS  Google Scholar 

  27. Chang Q, Zhou J, Wang Y, Meng G (2009) Adv Powder Technol 20:371. doi:10.1016/j.apt.2009.06.001

    Article  CAS  Google Scholar 

  28. Chen H, Wang Y (2002) Ceram Int 28:541. doi:10.1016/S0272-8842(02)00007-X

    Article  CAS  Google Scholar 

  29. Yu J, Shi JL, Wang LZ, Ruan ML, Yan DS (2001) Mater Lett 48:112. doi:10.1016/S0167-577X(00)00289-5

    Article  CAS  Google Scholar 

  30. Ye F, Dong Z, Zhang H (2010) Mater Lett 64:1441. doi:10.1016/j.matlet.2010.03.049

    Article  CAS  Google Scholar 

  31. Deshmane VG, Adewuyi YG (2012) Microporous Mesoporous Mater 148:88. doi:10.1016/j.micromeso.2011.07.012

    Article  CAS  Google Scholar 

  32. Hudson MJ, Knowles JA (1996) J Mater Chem 6:89. doi:10.1039/jm9960600089

    Article  CAS  Google Scholar 

  33. Ciesla U, Fröba M, Stucky G, Schüth F (1999) Chem Mater 11:227. doi:10.1021/cm980205v

    Article  CAS  Google Scholar 

  34. Chen SL, Jang LY, Cheng S (2006) J Phys Chem B 110:11761. doi:10.1021/jp060564a

    Article  CAS  Google Scholar 

  35. Toraya H, Yoshimura M, Somiya S (1984) J Am Ceram Soc 67:C119. doi:10.1111/j.1151-2916.1984.tb19715.x

    CAS  Google Scholar 

  36. Jaenicke S, Ghuah GK, Raju V, Nie YT (2008) Catal Surv Asia 12:153. doi:10.1007/s10563-008-9048-2

    Article  CAS  Google Scholar 

  37. Srinivasan R, De Angelis R, Davis BH (1986) J Mater Res 1:583. doi:10.1557/JMR.1986.0583

    Article  Google Scholar 

  38. Srinivasan R, Rice L, Davis BH (1990) J Am Ceram Soc 73:3528. doi:10.1111/j.1151-2916.1990.tb06492.x

    Article  CAS  Google Scholar 

  39. Garvie RC, Goss MF (1986) J Mater Sci 21:1253. doi:10.1007/BF00553259

    Article  CAS  Google Scholar 

  40. Basahel SN, Abd El-Maksod IH, Abu-Zied BM, Mokhtar M (2010) J Alloys Compd 493:630. doi:10.1016/j.jallcom.2009.12.169

    Article  CAS  Google Scholar 

  41. Yamamoto T, Tanaka T, Takenaka S, Yoshida S, Onari T, Takahashi Y, Kosaka T, Hasegawa S, Kudo M (1999) J Phys Chem B 103:2385. doi:10.1021/jp984378j

    Article  CAS  Google Scholar 

  42. Mercera PDL, Van Ommen JG, Doesburg EBM, Burggraaf AJ, Ross JRH (1990) Appl Catal 57:127. doi:10.1016/S0166-9834(00)80728-9

    Article  CAS  Google Scholar 

  43. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, London

    Google Scholar 

  44. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603. doi:10.1351/pac198557040603

    Article  CAS  Google Scholar 

  45. Basahel SN, Tarek TA, Narasimharao K, Bagabas AA, Mokhtar M (2012) Mater Res Bull 47:3463. doi:10.1016/j.materresbull.2012.07.003

    Article  CAS  Google Scholar 

  46. Landau MV, Titelman L, Shapira-Tchelet AM, Wilson P, Tavor D, Vradman L, Wolfson A (2005) Stud Surf Sci Catal 156:385. doi:10.1016/S0167-2991(05)80233-2

    Article  CAS  Google Scholar 

  47. Blin JL, Gigot L, Léonard A, Su BL (2002) Stud Surf Sci Catal 141:257. doi:10.1016/S0167-2991(02)80550-X

    Article  CAS  Google Scholar 

  48. Rana S, Mallick S, Parida KM (2011) Ind Eng Chem Res 50:2055. doi:10.1021/ie101777a

    Article  CAS  Google Scholar 

  49. Huang YY, McCarthy TJ, Sachtler WMH (1996) Appl Catal A 148:135. doi:10.1016/S0926-860X(96)00223-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. MS/12/474. The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek T. Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokhtar, M., Basahel, S.N. & Ali, T.T. Effect of synthesis methods for mesoporous zirconia on its structural and textural properties. J Mater Sci 48, 2705–2713 (2013). https://doi.org/10.1007/s10853-012-7068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7068-9

Keywords

Navigation