Skip to main content
Log in

Structural, optical, and magnetic characterization of Co and N co-doped ZnO nanopowders

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Co and N co-doped ZnO nanopowders with Co and N concentration 4, 6, and 8 mol% were synthesized by sol–gel method. Powder X-ray diffraction reveals that Co and N co-doped ZnO crystallize in wurtzite structure having space group C 6v . Photo-luminescence studies show the reduction in band gap with increase in concentration of dopants. Micro Raman studies show the red shift for 1LO phonon peak with increase in doping, generally credited to the stress caused by lattice mismatch due to N doping in ZnO. X-ray absorption spectroscopy reveals that Co replaces the Zn atoms and N replace the O atoms in the host ZnO lattice. Magnetic studies show that Co and N co-doped ZnO nanopowders exhibit ferromagnetic character at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, Molnar SV, Roukes ML, Chtchelkanova AY, Treger DM (2001) Science 294:1488

    Article  CAS  Google Scholar 

  2. Furdyna JK (1988) J Appl Phys 64:R29

    Article  CAS  Google Scholar 

  3. Ohno H (1998) Science 281:951

    Article  CAS  Google Scholar 

  4. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Science 287:1019

    Article  CAS  Google Scholar 

  5. Jeong SH, Kim BS, Lee BT (2003) Appl Phys Lett 82:2625

    Article  CAS  Google Scholar 

  6. Pearton SJ, Abernathy CR, Overberg ME, Thaler GT, Norton DP, Theodoropoulou N, Hebard AF, Park YD, Ren F, Kim J, Boatner LA (2003) J Appl Phys 93:1

    Article  CAS  Google Scholar 

  7. Sato K, Katayama-Yoshida H (2000) Jpn J Appl Phys 39:L555

    Article  CAS  Google Scholar 

  8. Sato K, Katayama-Yoshida H (2001) Jpn J Appl Phys 40:L334

    Article  CAS  Google Scholar 

  9. Ueda K, Tabata H, Kawai T (2001) Appl Phys Lett 79:988

    Article  CAS  Google Scholar 

  10. Prellier W, Fouchet A, Mercey B, Simon Ch, Raveau B (2003) Appl Phys Lett 82:3490

    Article  CAS  Google Scholar 

  11. Kim JH, Kim H, Kim D, Ihm YM, Choo WK (2003) Phys B 327:304

    Article  CAS  Google Scholar 

  12. Norton DP, Overberg ME, Pearton SJ, Pruessner K, Budai JD, Boatner LA, Chisholm MF, Lee JS, Khim JG, Park YD, Wilson RG (2003) Appl Phys Lett 83:5488

    Article  CAS  Google Scholar 

  13. Spaldin NA (2004) Phys Rev B 69:125201

    Article  Google Scholar 

  14. Matsui H, Saeki H, Kawai T, Tabata H, Mizobuchi B (2004) J Appl Phys 95:5882

    Article  CAS  Google Scholar 

  15. Ma JG, Liu YC, Mu R, Zhang JY, Lu YM, Shen DZ, Fan XW (2004) J Vac Sci Technol B 22:94

    Article  CAS  Google Scholar 

  16. Yuldashev SU, Igamberdiev KT, Kang TW, Pelenovich WO, Shashkov AG (2008) Appl Phys Lett 93:092503

    Article  Google Scholar 

  17. Wang Q, Sun Q, Jena P, Kawazoe Y (2004) Phys Rev B 70:052408

    Article  Google Scholar 

  18. Assadi MHN, Zhang YB, Li S (2009) J Phys 21:185503

    CAS  Google Scholar 

  19. Assadi MHN, Zhang YB, Li S (2009) J Appl Phys 105:043906

    Article  Google Scholar 

  20. Liu SM, Gu SL, Ye JD, Zhu SM, Liu W, Tang K, Shan ZP, Zhang R, Zheng YD, Sun XW (2008) Appl Phys A 91:535

    Article  CAS  Google Scholar 

  21. Lu ZL, Mo ZR, Zou WQ, Wang S, Yan GQ, Liu XC, Lin YB, Xu JP, Lv LY, Wu XM, Xia ZH, Xu MX, Zhang FM, Du YW (2008) J Phys D 41:115008

    Article  Google Scholar 

  22. Xu HY, Liu YC, Xu CS, Liu YX, Shao CL, Mu R (2006) Appl Phys Lett 88:242502

    Article  Google Scholar 

  23. Yan W, Sun Z, Liu Q, Li Z, Shi T, Wang F, Qi Z, Zhang G, Wei S, Zhang H, Chen Z (2007) Appl Phys Lett 90:242509

    Article  Google Scholar 

  24. Lee Y, Lee JC, Su CW (2010) IEEE Trans Magn 46:1565

    Article  CAS  Google Scholar 

  25. Futsuhara M, Yoshioka K, Takai O (1988) Thin Solid Films 317:322

    Article  Google Scholar 

  26. Liu XJ, Song C, Zeng F, Pan F (2008) Thin Solid Films 516:8757

    Article  CAS  Google Scholar 

  27. Yoo YZ, Fukumura T, Jin Z, Hasegawa K, Kawasaki M, Ahmet P, Chikyow T, Koinuma H (2001) J Appl Phys 90:4246

    Article  CAS  Google Scholar 

  28. Thakur P, Chae KH, Kim JY, Subramanian M, Jayavel R, Asokan K (2007) Appl Phys Lett 91:162503

    Article  Google Scholar 

  29. Lee EYM, Tran N, Russell J, Lamp RN (2002) J Appl Phys 92:2996

    Article  CAS  Google Scholar 

  30. Munekata H, Abe T, Koshihara S, Oiwa A, Hirasawa M, Katsumoto S, Iye Y, Urano C, Takagi H (1997) J Appl Phys 81:4862

    Article  CAS  Google Scholar 

  31. Koshihara S, Oiwa A, Hirasawa M, Katsumoto S, Iye Y, Urano C, Takagi H, Munekata H (1997) Phys Rev Lett 78:4617

    Article  CAS  Google Scholar 

  32. Yang LW, Wu XL, Qiu T, Siu GG, Chu PK (2006) J Appl Phys 99:074303

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Academia Sinica and National Science Council, Taiwan, Republic of China, under the Grant number NSC98-2811-M-001-106. One of the authors, Sanjeev Kumar, is also thankful to IOP, Academia Sinica, Taipei for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Chen, C.L., Dong, C.L. et al. Structural, optical, and magnetic characterization of Co and N co-doped ZnO nanopowders. J Mater Sci 48, 2618–2623 (2013). https://doi.org/10.1007/s10853-012-7055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7055-1

Keywords

Navigation