Skip to main content
Log in

Synthesis and properties of (Fe, Ni)-doped zinc sulfide nanopowders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and (Fe, Ni)-doped ZnS nanopowders have been successfully synthesized by chemical co-precipitation method using Poly Vinyl Pyrrolidone (PVP) as capping agent. Powder X-ray diffraction (XRD) studies reveal that the synthesized powders are in cubic blended structure. The average crystalline size of pure and doped ZnS nanopowder conform around 2–3 nm. In the investigations, Ni is kept constant at 3 mol% and Fe is increased from 1 to 5 mol%. Transition electron microscopy (TEM) is also used to investigate the average size of the nanopowders. TEM results are reasonably in good agreement. SEM micrographs of the (Fe, Ni)-doped nanopowders result in agglomeration with spherical in shape. The EDAX spectra show the chemical composition of dopants is uniform in ZnS. Optical absorption spectra show the absorption edge at 310 nm. Photoluminescence (PL) studies are conducted with excitation wavelength of 306 nm. Pure ZnS exhibits sharp emission peaks at 438 nm, 450 nm and 466 nm. (Fe, Ni)-doped ZnS samples also exhibit the sharp emission peaks at 450 nm and 467 nm with decreasing intensity. The magnetic measurements reveal that 5 mol% Fe- and 3 mol% Ni-doped ZnS nanopowders exhibit a weak ferromagnetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998)

    CAS  Google Scholar 

  2. J.K. Furdyna, Dilute magnetic semiconductors. J. Appl. Phys. 64, R29 (1988)

    CAS  Google Scholar 

  3. M.L. Steigerwald, L.E. Brus, Semiconductor crystallites: a class of large molecules. Acc. Chem. Res. 23, 183–186 (1990)

    CAS  Google Scholar 

  4. D. Kim, K.D. Min, J. Lee, J.H. Park, J.H. Chun, Influences of surface capping on particle size and optical characteristics of ZnS: Cu nanocrystals. Mater. Sci. Eng. B 131, 13–17 (2006)

    CAS  Google Scholar 

  5. Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525–532 (1991)

    CAS  Google Scholar 

  6. V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Light-emittingdiodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994)

    CAS  Google Scholar 

  7. R.N. Bharagava, Doped nanocrystalline materials—physics and applications. J. Lumin. 70, 85–94 (1996)

    Google Scholar 

  8. C.C. Chen, Y.J. Hsu, Y.F. Lin, S.Y. Lu, Super paramagnetism found in diluted magnetic semiconductor nanowires: Mn-doped CdSe. J. Phys. Chem. C 112, 17964–17968 (2008)

    CAS  Google Scholar 

  9. S. Kumar, S. Kumar, N.K. Verma, S.K. Chakravarti, Room temperature ferromagnetism in solvo thermally synthesized pure CdSe and CdSe: Ni nanorods. J. Mater. Sci. Mater. Electron. 22, 1456–1459 (2011)

    CAS  Google Scholar 

  10. Z. Jindal, N.K. Verma, Enhanced luminescence of UV irradiated Zn1-xNixS nanoparticles. Mater. Chem. Phys. 124, 270–273 (2010)

    CAS  Google Scholar 

  11. K. Kaur, G.S. Lotey, N.K. Verma, Structural, optical and magnetic properties of cobalt-doped CdS dilute magnetic semiconducting nanorods. Mater. Chem. Phys. 143, 141–146 (2013)

    Google Scholar 

  12. G.S. Lotey, J. Singh, N.K. Verma, Room temperature ferromagnetism in Tb-doped ZnO dilute magnetic semiconducting nanoparticles. J. Mater. Sci. Mater. Electron. 24, 3611–3616 (2013)

    CAS  Google Scholar 

  13. G.S. Lotey, Z. Jindal, V. Singhi, N.K. Verma, Structural and photoluminescence properties of Eu-doped ZnS nanoparticles. Mater. Sci. Semicond. Process. 16, 2044–2050 (2013)

    Google Scholar 

  14. X.S. Fang, C.H. Ye, L.D. Zhang, Y.H. Wang, Adv. Func. Mater. 15, 63–68 (2005)

    CAS  Google Scholar 

  15. X. Fang, Y. Bando, C. Ye, D. Golberg, Chem. Commun. 3048–3050 (2007).

  16. X.S. Fang, Y. Bando, G.Z. Shen, C.H. Ye, Adv. Mater. 19, 2593–2596 (2007)

    CAS  Google Scholar 

  17. X. Fang, Y. Bando, C. Ye, G. Shen, J. Phys. Chem. C 111, 8469–8474 (2007)

    CAS  Google Scholar 

  18. X. Fang, U.K. Gautam, Y. Bando, B. Dierre, J. Phys. Chem. C 112, 4735–4742 (2008)

    CAS  Google Scholar 

  19. J. Yan, X. Fang, L. Zhang, Y. Bando, U.K. Gautam, Nano Lett. 8, 2794–2799 (2008)

    CAS  Google Scholar 

  20. X. Fang, Y. Bando, M. Liao, U.K. Gautam, C. Zhi, Adv. Mater. 21, 2034–2039 (2009)

    CAS  Google Scholar 

  21. X. Fang, Y. Bando, M. Liao, T. Zhai, Adv. Funct. Mater. 20, 500–508 (2010)

    CAS  Google Scholar 

  22. L. Hu, J. Yan, M. Liao, H. Xiang, X. Gong, Adv. Mater. 24, 2305–2309 (2012)

    CAS  Google Scholar 

  23. H. Liu, L. Hu, K. Watanabe, X. Hu, B. Dierr, Adv. Funct. Mater. 23, 3701–3709 (2013)

    CAS  Google Scholar 

  24. X. Xu, L. Hu, N. Gao, S. Liu, S. Wageh, Adv. Funct. Mater. 25, 445–454 (2015)

    CAS  Google Scholar 

  25. X. Xu, S. Li, J. Chen, S. Cai, Z. Long, Adv. Func. Mater. 28, 1802029 (2018)

    Google Scholar 

  26. C.K.K. Sagar, P. Sajan, M.J. Bushiri, J. Mater. Sci. 30, 18220–18226 (2019)

    CAS  Google Scholar 

  27. X. Fang, Y. Bando, U.K. Gautam, T. Zhai, Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009)

    CAS  Google Scholar 

  28. R. Khan, N.S. Das, K.K. Chattopadhyay, J. Mater. Sci. 30, 19189–19198 (2019)

    CAS  Google Scholar 

  29. X.S. Fang, L.M. Wu, L.F. Hu, Adv. Mater. 23, 585–598 (2011)

    CAS  Google Scholar 

  30. R. Bhargava, D. Gallagher, T. Welker, Doped nanocrystals of semiconductors—a new class of luminescent materials. J. Lumin. 60, 275–280 (1994)

    Google Scholar 

  31. S. Bhattacharya, D. Chakravorty, Electrical and magnetic properties of cold compacted iron-doped zinc sulfide nanoparticles synthesized by wet chemical method. Chem. Phys. Lett. 444, 319–323 (2007)

    CAS  Google Scholar 

  32. S. Sambasivam, D.P. Joseph, J.G. Lin, C. Venkateswaran, Synthesis and characterization of thiophenol passivated Fe-doped ZnS nanoparticles. Mater. Sci. Eng. B 150, 125–129 (2008)

    CAS  Google Scholar 

  33. N. Eryong, L. Donglai, Z. Yunsen, B. Xue, Y. Liang, J. Yong, J. Zhifeng, S. Xiaosong, Photoluminescence and magnetic properties of Fe-doped ZnSnano-particles synthesized by chemical coprecipitation. Appl. Surf. Sci. 257, 8762–8766 (2011)

    Google Scholar 

  34. S. Kumar, N.K. Verma, Effect of Ni-doping on optical and magnetic properties of solvo thermally synthesized ZnS wurtzitenanorods. J. Mater. Sci. Mater. Electron. 25, 785–790 (2014)

    CAS  Google Scholar 

  35. S. Sambasivam, D.P. Joseph, J.G. Lin, C. Venkateswaran, Doping induced magnetism in Co-ZnS nanoparticles. J. Solid State Chem. 182, 2598–2601 (2009)

    CAS  Google Scholar 

  36. M. Sarkar, S. Sanyal, S. Kar, S. Biswas, S. Banerjee, S. Chaudhuri, H. Takeyama, F. Mino, Komori, Ferromagnetism in zinc sulfide nanocrystals: dependence on manganese concentration. Phys. Rev. B 75, 224–409 (2007)

    Google Scholar 

  37. D.A. Reddy, G. Murali, R. Vijayalakshmi, B. Reddy, Room temperature ferromagnetism in EDTA capped Cr-doped ZnS nanoparticles. Appl. Phys. A Mater. Sci. Process. 105, 119–124 (2011)

    CAS  Google Scholar 

  38. S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, Room temperature ferromagnetism in Ni-doped ZnS nanoparticles. J. Alloy. Compd. 554, 357–362 (2013)

    CAS  Google Scholar 

  39. M. Wei, J. Cao, H. Fu, J. Yang, Y. Yan, L. Yang, D. Wang, D. Han, L. Fan, B. Wang, The structure and room temperature ferromagnetism property of the ZnS:Cu2+ nanoparticles. Mater. Sci. Semicond. Process. 16, 928–932 (2013)

    CAS  Google Scholar 

  40. F. Zhu, S. Dong, G. Yang, Ferromagnetic properties in Fe-doped ZnS thin films. Opto Electron. Adv. Mater. 4, 2072–2075 (2010)

    CAS  Google Scholar 

  41. M. Alagar, T. Theivasanthi, A. Kubera Raja, J. Appl. Sci. 12, 398 (2012)

    CAS  Google Scholar 

  42. H. Abdullah, S.A. Halim, Electrical and microstructural properties of (La1-xPrx) ½ Ba1/2MnO3 compounds. Sains. Malay. 23, 213 (2009)

    Google Scholar 

  43. Q. Fang, H. Cheng, K. Huang, J. Wang, R. Li, Y. Jiao, J. Magn, Doping effect on crystal structure and magnetic properties of chromium-substituted strontium hexa ferrite nanoparticles. Magn. Magn. Mater 294, 281 (2005)

    CAS  Google Scholar 

  44. M.J. Iqbal, B. Kishwar, Electrical properties of MgAl2–2x Zrx MxO4 (M=Co, Ni and x=0.00–0.20) synthesized by co-precipitation technique using urea. Mater. Res. Bull. 44, 754 (2009)

    Google Scholar 

  45. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. Lett. 56, 978–982 (1939)

    CAS  Google Scholar 

  46. B.D. Cullity, S.R. Stock, Elementary of X-ray diffraction, englewood cliffs, 3rd edn. (Prentice-Hall, New Jersey, 2001)

    Google Scholar 

  47. C. Bi, L. Pan, M. Xu, L. Qin, J. Yin, Synthesis and magnetic properties of Co-doped wurtzite ZnS nanocrystals. Mater. Chem. Phys. 116, 363–367 (2009)

    CAS  Google Scholar 

  48. L. Zhang, D. Qin, G. Yang, Q. Zhang, The investigation on synthesis and optical properties of ZnS: Co nanocrystals by using hydrothermal method. Chalcogenide Lett. 9, 93–98 (2012)

    Google Scholar 

  49. K.T. Al-Rasoul, N.K. Abbas, Z.J. Shanan, Structural and optical characterization of Cu and Ni doped ZnS nanoparticles. Int. J. Electrochem. Sci. 8, 5594–5604 (2013)

    CAS  Google Scholar 

  50. S. Kumar, N.K. Verma, Ferromagnetic and weak super paramagnetic like behavior of Ni-doped ZnS nanocrystals synthesized by reflux method. J. Mater. Sci. Mater. Electron. 25, 1132–1137 (2014)

    CAS  Google Scholar 

  51. Y. Li, C. Cao, Z. Chen, Magnetic and optical properties of Fe doped ZnS nanoparticles synthesized by micro emulsion method. Chem. Phys. Lett. 517, 55–58 (2011)

    CAS  Google Scholar 

  52. D.P. Norton, M.E. Overberg, S.J. Pearton, K. Pruessner, Ferromagnetism in cobalt-implanted ZnO. Appl. Phys. Lett. 83, 5488 (2003)

    CAS  Google Scholar 

  53. J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84, 1338 (2004)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Venkatramana Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreenivasulu, B., Venkatramana Reddy, S. & Swapna, P. Synthesis and properties of (Fe, Ni)-doped zinc sulfide nanopowders. J Mater Sci: Mater Electron 31, 16150–16159 (2020). https://doi.org/10.1007/s10854-020-03796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03796-8

Navigation