Skip to main content
Log in

Zinc oxide nanostructures and their applications

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) has been known as the next most important material for the fabrication of efficient nanodevices and nanosystems because of its versatile properties such as semiconducting, piezoelectric, and pyroelectric multiple properties. In this review, the state-of-the-art technologies related to the synthesis and characterization, the selective growth of ZnO nanostructures, and their applications for nanodevices are discussed. A special concern is focused on the controlled selective growth of ZnO nanostructures on wanted areas of substrates, which is crucial factor for devices applications. The device applications of ZnO nanostructures include field effect transistors (FETs), field-emission devices, piezoelectric nanogenerators, biosensors, p-n heterjunction diodes such as light-emitting diodes and photovoltaic cells, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook of Semiconductor Nanostructures and Nanodevices, Edited by A. A. Balandin and K. L. Wang, American Scientific Publishers (2005), Encyclopedia of Nanoscience and Nanotechnology, Edited by H. S. Nalwa, American Scientific Publishers (2011).

  2. Metal Oxide Nanostructures and Their Applications, Edited by Ahmad Umar and Yoon-Bong Hahn, American Scientific Publishers (2010).

  3. S. Chen, Y. Liu, C. Shao, R. Mu, Y, Lu, J. Zhang, D. Shen and X. Fan, Adv. Mater., 17, 586 (2005); K. Hara, T. Horiguchi, T. Kinoshita, K. Sayams, H. Sugihara and H. Arakawa, Sol. Energy Mater. Sol. Cells, 64, 115 (2000).

    Article  CAS  Google Scholar 

  4. B. Pal and M. Sharon, Mater. Chem. Phys., 76, 82 (2002).

    Article  CAS  Google Scholar 

  5. J. Q. Xu, Q. Y. Pan, Y. A. Shun and Z. Z. Tian, Sens. Actua. B: Chem., 66, 277 (2000).

    Article  Google Scholar 

  6. P.M. Martin, M. S. Good, J.W. Johnston, L. J. Bond and S.L. Crawford, Thin Solid Films, 379, 253 (2000); S. Lee, Y. H. Im and Y. B. Hahn, Korean J. Chem. Eng., 22, 334 (2025).

    Article  CAS  Google Scholar 

  7. S. Muthukumar, C. R. Golra, N.W. Emanetoglu, S. Liang and Y. J. Lu, J. Cryst. Growth, 225, 197 (2001).

    Article  CAS  Google Scholar 

  8. S. C. Minne, S. R. Manalis and C. F. Quate, Appl. Phys. Lett., 67, 3918 (1995).

    Article  CAS  Google Scholar 

  9. K. Keis, L. Vayssieres, S. Lindquist and A. Hagfeldt, Nanostuct. Mater., 12, 487 (1999).

    Article  Google Scholar 

  10. C.R. Golra, N.W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback and H. J. Shen, Appl. Phys., 85, 2595 (1999).

    Article  Google Scholar 

  11. Z. L. Wang, Mater. Today, 26 (2004).

  12. S. J. Pearton, D. P. Norton, K. Ip, Y.W. Heo and T. Steiner, Superlatt. Microstruct., 34, 3 (2003).

    Article  CAS  Google Scholar 

  13. T. Zhang, W. Dong, M.K. Brewer, S. Konar, R.N. Njabon and Z. R. Tian, J. Am. Chem. Soc., 128, 10960 (2006).

    Article  CAS  Google Scholar 

  14. G. C. Yi, C. Wang and W. II Park, Semicond. Sci. Technol., 20, S22 (2005).

    Article  CAS  Google Scholar 

  15. A. Eftekhari, F. Molaei and H. Arami, Mater. Sci. Eng. A, 437, 446 (2006).

    Article  Google Scholar 

  16. G. Shen, J. H. Cho, J. K. Yoo, G. C. Yi and C. J. Lee, J. Phys. Chem. B., 109, 5491 (2005).

    Article  CAS  Google Scholar 

  17. G. Shen, D. Chen and C. J. Lee, J. Phys. Chem. B., 110, 15689 (2006).

    Article  CAS  Google Scholar 

  18. B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki and H. Koinuma, Appl. Phys. Lett., 84, 4098 (2004).

    Article  CAS  Google Scholar 

  19. J. Liu, P. X. Gao, W. J. Mai, C. S. Lao, Z. L. Wang and R. Tummala, Appl. Phys. Lett., 89, 63125 (2006).

    Article  Google Scholar 

  20. J.Y. Lao, J.Y. Huang, D. Z. Wang and Z. F. Ren, Nano Lett., 3, 235 (2003); J.Y. Lao, J.G. Wen and Z. F. Ren, Nano Lett., 2, 1287 (2002); F. Liu, P. J. Cao, H. R. Zhang, J. Q. Li and H. J. Gao, Nanotechnology, 15, 949 (2004); X. Y. Kong, Y. Ding, R. S. Yang and Z. L. Wang, Science, 303, 1348 (2004); P. Gao and Z. L. Wang, J. Phys. Chem. B., 106, 12653 (2002); Y. Liang, X. Zhang, L. Qin, E. Zhang, H. Gao and Z. Zhang, J. Phys. Chem. B., 110, 21593 (2006); A. Umar, S. Lee, Y. S. Lee, K. S. Nahm and Y. B. Hahn, J. Cryst. Growth, 277, 479 (2005).

    Article  CAS  Google Scholar 

  21. A. Sekar, S. H. Kim, A. Umar and Y.B. Hahn, J. Cryst. Growth, 277, 471 (2005); A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm and Y. B. Hahn, J. Cryst. Growth, 282, 131 (2005); A. Umar and Y.B. Hahn, Nanotechnology, 17, 2174 (2006); A. Umar, H.W. Ra, J. P. Jeong, E.-K. Suh and Y. B. Hahn, Korean J. Chem. Eng., 23, 499 (2006); A. Umar, J. P. Jeong, E. K. Suh and Y. H. Hahn, Korean J. Chem. Eng., 23, 860 (2006).

    Article  CAS  Google Scholar 

  22. W. I. Park, D.H. Kim, S.W. Jung and G.C. Yi, Appl. Phys. Lett., 80, 4232 (2002); W. Lee, H.G. Sohn and J.M. Myoung, Mater. Sci. Forum, 449, 1245 (2004); B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki and N. Usami, Appl. Phys. Lett., 83, 1635 (2003); S. Lee, A. Umar, S. H. Kim, N.K. Reddy and Y. B. Hahn, Korean J. Chem. Eng., 24, 1084 (2007).

    Article  CAS  Google Scholar 

  23. R. Kaur, A.V. Singh, K. Sehrawat, N. C. Mehra and R. M. Mehra, J. Non-Cryst. Sol., 352,23, 2565 (2006); Y.W. Chen, Y. C. Liu and S.X. Lu, J. Chem. Phys., 123, 134701 (2005); A. Dev, S.K. Panda, S. Kar, S. Chakrabarti and S. Chaudhuri, J. Phys. Chem. B, 110, 14266 (2006).

    Article  CAS  Google Scholar 

  24. B. Cao, Y. Li, G. Duan and W. Cai, Cryst. Growth Design, 6, 1091 (2006); X. Wu, G. Lu, C. Li and G. Shi, Nanotechnology, 17, 4936 (2006).

    Article  CAS  Google Scholar 

  25. B. Liu and H. C. Zeng, J. Am. Chem. Soc., 125, 4430 (2003); J. M. Wang and L. Gao, J. Mater. Chem., 13, 2551 (2003); M. Guo, P. Diao and S. M. Cai, J. Solid State Chem., 178, 1864 (2005); S. Kar, A. Dev and S. Chaudhuri, J. Phys. Chem. B., 110, 17848 (2006); T. Ghoshal, S. Kar and S. Chaudhuri, J. Cryst. Growth, 293, 438 (2006).

    Article  CAS  Google Scholar 

  26. C. K. Xu, G. D. Xu, Y. K. Liu and G. H. Wang, Solid State Commun., 122, 175 (2002); X. Gao, X. Li and W. Yu, J. Phys. Chem. B., 109, 1155 (2005); H. Zhang, D. Yang, D. Li, X. Ma, S. Li and D. Que, Cryst. Growth Des., 5, 547 (2005).

    Article  CAS  Google Scholar 

  27. R. R. Reeber, J. Appl. Phys., 41, 5063 (1970).

    Article  CAS  Google Scholar 

  28. A. Kuoni, R. Holzherr, M. Boillat and N. F. de Rooij, J. Micromech. Microeng., 13, S103 (2003); F. R. Blom, D. J. Yntema, F.C.M. Van de Pol, M. Elwenspoek, J. H. J. Fluitman and Th. J.A. Popma, Sens. Actuators A-Phys., A21, 226 (1990).

    Article  CAS  Google Scholar 

  29. O. Dulub, L. A. Boatner and U. Diebold, Surf. Sci., 519, 201 (2002).

    Article  CAS  Google Scholar 

  30. W. J. Li, E.W. Shi, W. Z. Zhong and Z.W. Yin, J. Cryst. Growth, 203, 186 (1999); J.C. Phillips, Bonds and Bands in Semiconductors, Academic Press, New York (1973).

    Article  CAS  Google Scholar 

  31. Y. Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, Z. K. Tang, P. Yu and G. K. L. Wong, Phys. Stat. Sol., 202, 669 (1997).

    Article  CAS  Google Scholar 

  32. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964).

    Article  CAS  Google Scholar 

  33. R. S. Wagner, W. C. Ellis, S. M. Arnold and K. A. Jackson, J. Appl. Phys., 35, 2993 (1964).

    Article  CAS  Google Scholar 

  34. Y. Wu and P. Yang, J. Am. Chem. Soc., 123, 3165 (2001); S.Y. Bae, H.W. Seo and J. H. Park, J. Phys. Chem. B., 108, 5206 (2004).

    Article  CAS  Google Scholar 

  35. P. Chang, Z. Fan, W. Tseng, D. Wang, W. Chiou, J. Hong and J.G. Lu, Chem. Mater., 16, 5133 (2004); M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater., 13, 113 (2001); Q. X. Zhao, M. Millander, R. E. Morjan, Q.-H. Hu and E. E. B. Campbell, Appl. Phys. Lett., 83, 165 (2003); Z. Fan, D. Wang, P. Chang, W. Tseng and J. G. Lu, Appl. Phys. Lett., 85, 5923 (2004).

    Article  CAS  Google Scholar 

  36. J. H. He, J. H. Hsu, C. H. Wang, H. N. Lin, L. J. Chen and Z. L. Wang, J. Phys. Chem. B., 110, 50 (2006); X. Y. Kong and Z. L. Wang, Nano Lett., 3, 1625 (2003); P. X. Gao, Y. Ding and Z. L. Wang, Nano Lett., 3, 1315 (2003).

    Article  CAS  Google Scholar 

  37. A. Umar, B. Karunagran, E. K. Suh and Y. B. Hahn, Nanotechnology, 17, 4072 (2006)

    Article  CAS  Google Scholar 

  38. A. Umar, S.H. Kim, J. H. Kim and Y.B. Hahn, J. Nanosci. Nanotechnol., 7, 4522 (2007).

    Article  CAS  Google Scholar 

  39. A. Umar and Y. B. Hahn, Appl. Phys. Lett., 88, 173120 (2006).

    Article  Google Scholar 

  40. Y. K. Park, A. Umar, S. H. Kim and Y.-B. Hahn, J. Nanosci. Nanotechol., 7, 6349 (2008).

    Article  Google Scholar 

  41. J. S. Jeong, J. Y. Lee, J. H. Cho, H. J. Suh and C. J. Lee, Chem. Mater., 17, 2752 (2005).

    Article  CAS  Google Scholar 

  42. J. J. Wu, S. C. Liu, C.T. Wu, K. H. Chen and L. C. Chen, Appl. Phys. Lett., 81, 1312 (2002).

    Article  CAS  Google Scholar 

  43. Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R.M. Wang, J. Xu, Y. Song, S. L. Zhang and D. P. Yu, Appl. Phys. Lett., 83, 1689 (2003).

    Article  CAS  Google Scholar 

  44. Z. L. Wang, J. Phys.: Condens. Matter, 16, R82 (2004).

    Google Scholar 

  45. X.Y. Kong, Y. Ding, R. Yang and Z. L. Wang, Science, 303, 1348 (2004).

    Article  CAS  Google Scholar 

  46. X. Wen, Y. Fang, Q. Peng, C. Yang, J. Wang, W. Ge, K. S. Wong and S. Yang, J. Phys. Chem. B, 109, 15303 (2005).

    Article  CAS  Google Scholar 

  47. A. Umar, S. H. Kim, Y. H. Im and Y. B. Hahn, Superlattices and Microstructures, 39, 238 (2006).

    Article  CAS  Google Scholar 

  48. P. X. Gao and Z. L. Wang, J. Am. Chem. Soc., 125, 11299 (2003).

    Article  CAS  Google Scholar 

  49. H. J. Fan, R. Scholz, F.M. Kolb, M. Zacharias and U. Gosele, Sol. State Commun., 130, 517 (2004).

    Article  CAS  Google Scholar 

  50. A. Umar, S. Lee, Y. S. Lee, K. S. Nahm and Y. B. Hahn, J. Cryst. Growth, 277, 479 (2005).

    Article  CAS  Google Scholar 

  51. A. Umar, S. Lee, Y.H. Im and Y. B. Hahn, Nanotechnology, 16, 2462 (2005).

    Article  CAS  Google Scholar 

  52. F. Q. He and Y. P. Zhao, App. Phys. Lett., 88, 193113 (2006).

    Article  Google Scholar 

  53. Y. Dai, Y. Zhang, Q. K. Li and C.W. Nan, Chem. Phys. Lett., 358, 83 (2002).

    Article  CAS  Google Scholar 

  54. Z. L. Wang, X.Y. Kong and J. M. Zuo, Phys. Rev. Lett., 91, 185502 (2003).

    Article  CAS  Google Scholar 

  55. H. Yan, R. He, J. Johnson, M. Law, R. J. Saykally and P. Yang, J. Am. Chem. Soc., 125, 4728 (2003).

    Article  CAS  Google Scholar 

  56. P. X. Gao and Z. L. Wang, Appl. Phys. Lett., 84, 2883 (2004).

    Article  CAS  Google Scholar 

  57. G. Shen, Y. Bando and C. J. Lee, J. Phys. Chem. B., 109, 10779 (2005); M. S. Arnold, P. Avouris, Z.W. Pan and Z. L. Wang, J. Phys. Chem. B, 107, 659 (2003); P. C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong and J.G. Lu, Chem. Mater., 16, 5133 (2004); Z. Fan, D. Wang, P. C. Chang, W.Y. Tseng and J.G. Lu, Appl. Phys. Lett., 85, 5923 (2004); J.Y. Park, Y. S. Yun, Y. S. Hong, H. Oh, J. J. Kim and S. S. Kim, Appl. Phys. Lett., 87, 123108 (2005); J.Y. Park, H. Oh, J. J. Kim and S. S. Kim, Nanotechnology, 17, 1255 (2006); (a) Y. S. Yun, Y.Y. Park, H. Oh, J. J. Kim and S. S. Kim, J. Mater. Res., 21, 132 (2006), (b) Y.W. Heo, L. C. Tien, D. P. Norton, B. S. Kang, F. Ren, B. P. Gila and S. J. Pearton, Appl. Phys. Lett., 85, 2002 (2004); J.Y. Park, H. Oh, J. J. Kim and S. S. Kim, J. Cryst. Growth, 287, 145 (2006); J. Goldberger, D. J. Sirbuly, M. Law and P. Yang, J. Phys. Chem. B., 109, 9 (2005); W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae and H.-J. Lee, Appl. Phys. Lett., 85, 5052 (2004); (a) W. Q. Yang, H. B. Huo, L. Dai, R.M. Ma, S. F. Liu, G. Z. Ran, B. Shen, C. L. Lin and G.G. Qin, Nanotechnology, 17, 4868 (2006); (b) A. Umar, B.-K. Kim, J.-J. Kim and Y. B. Hahn, Nanotechnology, 18, 175606 (2007).

    Article  CAS  Google Scholar 

  58. Y. K. Park, A. Umar, S. H. Kim, J.-H. Kim, E.W. Lee, M. Vaseem and Y. B. Hahn, J. Nanosci. Nanotechnol., 8, 6010 (2008).

    Article  CAS  Google Scholar 

  59. H. T. Ng, J. Li, M. K. Smith, P. Ngnuyen, A. Cassell, J. Han and M. Meyyappan, Science, 300, 1249 (2003).

    Article  CAS  Google Scholar 

  60. X. D. Wang, C. J. Summers and Z. L. Wang, Nano Lett., 4, 423 (2004).

    Article  CAS  Google Scholar 

  61. D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X.W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W.Y. Zhou, G. Wang, C.Y. Wang and S. S. Xie, Nano Lett., 6, 2375 (2006).

    Article  CAS  Google Scholar 

  62. Q. Ahsanulhaq, S.H. Kim and Y. B. Hahn, J. Alloys and Compounds, 484, 17 (2009)

    Article  CAS  Google Scholar 

  63. Q. Ahsanulhaq, J.H. Kim, J. S. Lee and Y. B. Hahn, Electrochem. Commun., 12, 475 (2010).

    Article  CAS  Google Scholar 

  64. W. I. Park, C. H. Lee, J. H. Chae, D. H. Lee and G. C. Yi, Small, 5, 181 (2009); P.X. Gao, J. Liu, B.A. Buchine, B. Weintraub and Z. L. Wang, Appl. Phys. Lett., 91, 142108 (2007).

    Article  CAS  Google Scholar 

  65. Y. Qin, R. Yang and Z. L. Wang, J. Phys. Chem. C, 112, 18734 (2008); J. F. Jr. Conley, L. Stecker and Y. Ono, Appl. Phys. Lett., 87, 223114 (2005).

    CAS  Google Scholar 

  66. S. Xu, Y. Ding, Y. Wei, H. Fang, Y. Shen, A. K. Sood, D. L. Polla and Z. L. Wang, J. Am. Chem. Soc., 131, 6670 (2009); S. Xu, Y. Shen, Y. Ding and Z. L. Wang, Adv. Funct. Mater., 20 1493 (2010).

    Article  CAS  Google Scholar 

  67. S. H. Ko, I. Park, H. Pan, N. Misra, M. S. Rogers, C. P. Grigopoulos and A. P. Pisano, Appl. Phys. Lett., 92, 154102 (2008).

    Article  Google Scholar 

  68. V. Pachuri, A. Vlandas, K. Kern and K. Balasubramanian, Small, 6, 589 (2010).

    Article  Google Scholar 

  69. J. S. Lee, M. S. Islam and S. Kim, Nano Lett., 6, 1487 (2006).

    Article  CAS  Google Scholar 

  70. S. Ju, J. Li, N. Pimparkar, M. A. Alam, R. P. H. Chang and D. B. Janes, IEEE Trans. Nanotechnology, 6, 390 (2007).

    Article  Google Scholar 

  71. Y. K. Park, H. S. Choi, J.-H. Kim, J.-H. Kim and Y.-B. Hahn, Nanotechnolgy, 22, 185310 (2011).

    Article  Google Scholar 

  72. H. J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost and M. Zacharias, J. Cryst. Growth, 287, 34 (2006).

    Article  CAS  Google Scholar 

  73. D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X.W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W.Y. Zhou, G. Wang, C.Y. Wang, S. S. Xie, Nano Lett., 10, 2375 (2006).

    Article  Google Scholar 

  74. Y. Masuda, N. Kinoshita, F. Sato and K. Koumoto, Cryst. Growth & Design, 6, 75 (2006).

    Article  CAS  Google Scholar 

  75. Y. Tak and K. Yong, J. Phys. Chem. B, 109, 19263 (2005).

    Article  CAS  Google Scholar 

  76. Q. Ahsanulhaq, J. H. Kim and Y. B. Hahn, Nanotechnology, 18, 485307 (2007).

    Article  Google Scholar 

  77. K.-P. Hsueh, S.-C. Huang, C.-T. Li, Y.-M. Hsin, J.-K. Sheu, W.-C. Lai, and C.-J. Tun, Appl. Phys. Lett., 90, 132111 (2007); D. C. Oh, T. Suzuki, J. J. Kim, H. Makino, T. Hanada, M.W. Cho and T. Yao, Appl. Phys. Lett., 86, 032909 (2005); S.-K. Hong, T. Hanada, H.-J. Ko, Y. Chen, T. Yao, D. Imai, K. Araki, M. Shinohara, L. Saitoh and M. Terauchi, Phys. Rev. B, 65, 115331 (2002); T. Nakayama and M. J. Murayama, J. Cryst. Growth, 214–215, 299 (2000); C.-W. Lin, D.-J. Ke, Y.-C. Chao, L. Chang, M.-H. Liang and Y.-T. Ho, J. Cryst. Growth, 298, 472 (2007); Y. I. Alivov, U. Ozgur, S. Dogan, C. Liu, Y. Moon, X. Gu, V. Avrutin, Y. Fu and H. Morkoc, Solid-State Electron., 49, 1693 (2005); H. J. Fan, F. Fleischer, W. Lee, K. Nielsch, R. Scholz, M. Zacharias, U. Gosele, A. Dadgar and A. Krost, Superlattices Microstruct., 36, 95 (2004); W. I. Park and G. C. Yi, Adv. Mater., 16, 87 (2004).

    Article  Google Scholar 

  78. Q. Ahsanulhaq, A. Umar and Y. B. Hahn, Nanotechnology, 18, 115603 (2007).

    Article  Google Scholar 

  79. N. Koteeswara Reddy, Q. Ahsanulhaq and Y. B. Hahn, Appl. Phys. Lett., 93, 083124 (2008).

    Article  Google Scholar 

  80. N. Koteeswara Reddy, Q. Ahsanulhaq, J. H. Kim, M. Devika and Y. B. Hahn, Nanotechnology, 18, 445710 (2007); N. Koteeswara Reddy, Q. Ahsanulhaq, J. H. Kim and Y.B. Hahn, Appl. Phys. Lett., 92, 043127 (2008).

    Article  Google Scholar 

  81. K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmob and H. Siegbahn, J. Photochem. Photobio. A: Chem., 148, 57 (2002).

    Article  CAS  Google Scholar 

  82. K. Kakiuchi, E. Hosono and S. Fujihara, J. Photochem. Photobio. A: Chem., 179, 81 (2006).

    Article  CAS  Google Scholar 

  83. J. B. Baxtera and E. S. Aydil, Appl. Phys. Lett., 86, 053114 (2005); J. B. Baxtera and E. S. Aydil, Sol. Ener. Mater. Sol. Cells, 90, 607 (2006).

    Article  Google Scholar 

  84. M. Law, L.E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nature Mater., 4, 455 (2005); L. E. Greene, B.D. Yuhas, M. Law, D. Zitoun and P. Yang, Inorg. Chem., 45, 7535 (2006).

    Article  CAS  Google Scholar 

  85. S. H. Ko, D. Lee, H.W. Kang, K. H. Nam, J.Y. Yeo, S. J. Hong, C. P. Grigoropoulos and H. J. Sung, Nano Lett., 11, 666 (2011).

    Article  CAS  Google Scholar 

  86. Z. L. Wang and J. H. Song, Science, 312, 242 (2006).

    Article  CAS  Google Scholar 

  87. M.-P. Lu, J. Song, M.-Y. Lu, M.-T. Chen, Y. Gao, L.-J. Chen and Z. L. Wang, Nano Lett., 9, 1223 (2009).

    Article  CAS  Google Scholar 

  88. G. Zhu, R. Yang. S. Wang and Z. L. Wang, Nano Lett., 10, 3151 (2010).

    Article  CAS  Google Scholar 

  89. A. Umar, M. M. Rahman, S. H. Kim and Y. B. Hahn, J. Nanosci. Nanotechnology, 8, 3216 (2008).

    Article  CAS  Google Scholar 

  90. A. Umar, M. M. Rahman, M. Vaseem and Y.-B. Hahn, Electrochem. Commun., 11, 118 (2009).

    Article  CAS  Google Scholar 

  91. A. Umar, M. M. Rahman, A. Al-Hajry and Y.-B. Hahn, Talanta, 78, 284 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Bong Hahn.

Additional information

Dr. Yoon-Bong Hahn is Director of BK21 Center for Future Energy Materials and Devices, Head of School of Semiconductors and Chemical Engineering, and WCU Professor in Dept. of BIN Fusion Technology at Chonbuk National University (CBNU), Korea. He joined CBNU in 1991, prior to which he worked for LG Metals Research Center for 1988–1991 after he received his Ph.D in Dept. of Metallurgical Engineering, University of Utah in 1988. His research has resulted in over 190 peer-reviewed SCI papers and over 300 presentations at domestic and international conferences. He co-edited 4 books including Metal Oxide Nanostructures and Their Applications (5 volume sets) published by American Scientific Publishers (ASP) in March 2010. He is also the inventor of several patents, including key patents on the hybrid green energy window system, the thin film transistors having various structures containing laterally grown nanowires, and piezoelectric nanomaterials based biomimetic devices. He received The Scientist of Month Award in July, 2011, conferred by Korea Ministry of Education, Science and Technology. In 2005 and 2011 he was also honoured as Top 100 Scientists accredited by International Biographical Center, Cambridge, UK. He received several best paper awards in renowned international conferences and won Best Research Professor Award at CBNU for three consecutive years (2007–2009). His research area is growth of metal and metal oxide nanostructures and their applications for solar cells, optoelectronics, and biosensors and biomimtic devices.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, YB. Zinc oxide nanostructures and their applications. Korean J. Chem. Eng. 28, 1797–1813 (2011). https://doi.org/10.1007/s11814-011-0213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0213-3

Key words

Navigation