Skip to main content

Advertisement

Log in

Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chitosan (CS) nanofibers were prepared by an electrospinning technique and then treated with simulated body fluid (SBF) to encourage hydroxyapatite (HA) formation on their surface. The CS/HA nanofibers were subjected to scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy, and X-ray diffraction (XRD) to confirm HA formation as well as determine the morphology of the nanofibrous scaffolds. The SEM image indicated that the distribution of HA on the CS nanofibers was homogeneous. The results from EDS and XRD indicated that HA was formed on the nanofibrous surfaces after 6-day incubation in the SBF. The calcium/phosphorus ratio of deposited HA was close to that of natural bone. To determine biocompatibility, the CS/HA scaffolds were applied to the culture of rat osteosarcoma cell lines (UMR-106). The cell densities on the CS/HA nanofibers were higher than those on the CS nanofibers, the CS/HA film, and the CS film, indicating that cell proliferation on CS/HA nanofibers was enhanced. Moreover, the early osteogenic differentiation on CS/HA was also more significant, due to the differences in chemical composition and the surface area of CS/HA nanofibers. The biocompatibility and the cell affinity were enhanced using the CS/HA nanofibers. This indicates that electrospun CS/HA scaffolds would be a potential material in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peter M, Ganesh N, Selvamurugan N et al (2010) Carbohydr Polym 80:687

    Article  CAS  Google Scholar 

  2. Kim IY, Seo SJ, Moon HS et al (2008) Biotechnol Adv 26:1

    Article  CAS  Google Scholar 

  3. Thien DVH, Hsiao SW, Ho MH (2012) Nano Life 2:1250003. doi:10.1142/S1793984411000360

    Article  Google Scholar 

  4. Hsiao SW, Thien DVH, Ho MH et al (2010) Biomed Mater 5:054117. doi:10.1088/1748-6041/5/5/054117

    Article  Google Scholar 

  5. Agarwal S, Greimer A, Wendorff JH (2009) Adv Funct Mater 19:2863

    Article  CAS  Google Scholar 

  6. Zhang L, Webster TJ (2009) Nano Today 4:66

    Article  CAS  Google Scholar 

  7. Manjubala I, Ponomarev I, Wilke I, Jandt KD (2008) J Biomed Mater Res B 84:7

    CAS  Google Scholar 

  8. Yang D, Jin Y, Zhou Y et al (2008) Macromol Biosci 8:239. doi:10.1002/mabi.200700221

    Article  CAS  Google Scholar 

  9. Venugopal J, Prabhakaran MP, Zhang Y, Low S, Choon AT, Ramakrishna S (2010) Phil Trans R Soc A 368:2065

    Article  CAS  Google Scholar 

  10. Bhowmik R, Katti K, Katti D (2007) J Mater Sci 42:8795. doi:10.1007/s10853-007-1914-1

    Article  CAS  Google Scholar 

  11. Rameshbabu N, Rao K, Kumar T (2005) J Mater Sci 40:6319. doi:10.1007/s10853-005-2957-9

    Article  CAS  Google Scholar 

  12. Yang D, Jin Y, Ma G, Chen X, Lu F, Nie J (2008) J Appl Polym Sci 110:3328

    Article  CAS  Google Scholar 

  13. Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Biomaterials 29:4314

    Article  CAS  Google Scholar 

  14. Shen K, Hu Q, Chen L, Shen J (2010) J Appl Polym Sci 115:2683. doi:10.1002/app.29832

    Article  CAS  Google Scholar 

  15. Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X (2006) Eur Polym J 42:3171

    Article  CAS  Google Scholar 

  16. Li J, Chen Y, Yin Y, Yao F, Yao K (2007) Biomaterials 28:781

    Article  CAS  Google Scholar 

  17. Baskar D, Balu R, Kumar TSS (2011) Int J Biol Macromol 49:385. doi:10.1016/j.ijbiomac.2011.05.021

    Article  CAS  Google Scholar 

  18. Thomas V, Dean DR, Jose MV, Mathew B, Chowdhury S, Vohra YK (2007) Biomacromolecules 8:631. doi:10.1021/bm060879w

    Article  CAS  Google Scholar 

  19. Kim HW, Song JH, Kim HE (2005) Adv Funct Mater 15:1988

    Article  CAS  Google Scholar 

  20. Cui W, Li X, Chen J, Zhou S, Weng J (2008) Cryst Growth Des 8:4576. doi:10.1021/cg800641s

    Article  CAS  Google Scholar 

  21. Cui W, Li X, Xie C, Zhuang H, Zhou S, Weng J (2010) Biomaterials 31:4620

    Article  CAS  Google Scholar 

  22. Cui W, Li X, Xie C et al (2010) Polymer 51:2320

    Article  CAS  Google Scholar 

  23. Chen J, Chu B, Hsiao BS (2006) J Biomed Mater Res A 79:307

    Google Scholar 

  24. Kokubo T, Takadama H (2006) Biomaterials 27:2907

    Article  CAS  Google Scholar 

  25. Reneker DH, Chun I (1996) Nanotechnology 7:216

    Article  CAS  Google Scholar 

  26. Dzenis Y (2004) Science 304:1917. doi:10.1126/science.1099074

    Article  CAS  Google Scholar 

  27. Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R (2006) Mater Today 9:40

    Article  CAS  Google Scholar 

  28. Li D, Xia Y (2004) Adv Mater 16:1151

    Article  CAS  Google Scholar 

  29. De Vrieze S, Westbroek P, Van Camp T, Van Langenhove L (2007) J Mater Sci 42:8029. doi:10.1007/s10853-006-1485-6

    Article  CAS  Google Scholar 

  30. Zhang Y, Reddy VJ, Wong SY et al (2010) Tissue Eng A 16:1949

    Article  CAS  Google Scholar 

  31. Shalumon KT, Binulal NS, Selvamurugan N et al (2009) Carbohydr Polym 77:863

    Article  CAS  Google Scholar 

  32. Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H (2004) Macromol Rapid Commun 25:1600

    Article  CAS  Google Scholar 

  33. Ito Y, Hasuda H, Kamitakahara M et al (2005) J Biosci Bioeng 100:43

    Article  CAS  Google Scholar 

  34. Ho M-H, Hsieh C-C, Hsiao S-W, Van Hong Thien D (2010) Carbohydr Polym 79:955

    Article  CAS  Google Scholar 

  35. Stevens MM, George JH (2005) Science 310:1135

    Article  CAS  Google Scholar 

  36. Sangsanoh P, Supaphol P (2006) Biomacromolecules 7:2710

    Article  CAS  Google Scholar 

  37. Sangsanoh P, Suwantong O, Neamnark A, Cheepsunthorn P, Pavasant P, Supaphol P (2010) Eur Polym J 46:428

    Article  CAS  Google Scholar 

  38. Hakimimehr D, Liu DM, Troczynski T (2005) Biomaterials 26:7297

    Article  CAS  Google Scholar 

  39. Chesnutt BM, Yuan Y, Brahmandam N et al (2007) J Biomed Mater Res A 82:343

    CAS  Google Scholar 

  40. Patterson AL (1939) Phys Rev 56:978

    Article  CAS  Google Scholar 

  41. Cai Y, Liu Y, Yan W et al (2007) J Mater Chem 17:3780

    Article  CAS  Google Scholar 

  42. Shi Z, Huang X, Cai Y, Tang R, Yang D (2009) Acta Biomater 5:338. doi:10.1016/j.actbio.2008.07.023

    Article  CAS  Google Scholar 

  43. Heo SJ, Kim SE, Wei J et al (2009) J Biomed Mater Res A 89:108

    Google Scholar 

  44. Peng F, Yu X, Wei M (2011) Acta Biomater 7:2585

    Article  CAS  Google Scholar 

  45. Tuzlakoglu K, Bolgen N, Salgado A, Gomes M, Piskin E, Reis R (2005) J Mater Sci Mater Med 16:1099. doi:10.1007/s10856-005-4713-8

    Article  CAS  Google Scholar 

  46. Heinemann C, Heinemann S, Bernhardt A, Worch H, Hanke T (2008) Biomacromolecules 9:2913

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Science Council, Taiwan (NSC, No. 99-2221 E-011-120). We also would like to thank Mr. Sheng-Chung Liaw for his assistances in SEM and XRD setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Hua Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Hong Thien, D., Hsiao, S.W., Ho, M.H. et al. Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J Mater Sci 48, 1640–1645 (2013). https://doi.org/10.1007/s10853-012-6921-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6921-1

Keywords

Navigation