Skip to main content
Log in

Analysis of short fibres orientation in steel fibre-reinforced concrete (SFRC) by X-ray tomography

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical properties of fibre composite materials are largely determined by the orientation of fibres within the matrix. Which orientation distribution short fibres follow in different parts of a structural element is still a subject for research and discussions in the scientific community. In this article, we present a modern and advanced method for measuring the orientation of short fibres in steel fibre-reinforced concrete (SFRC) by X-ray microtomography. With this method, a voxel image of the fibres is obtained directly in 3D, and the orientation of each individual fibre is calculated based on a skeletonized representation of this image. Scans of 12 SFRC samples, taken from the central height region of real-size floor slabs, reveal the fibres to be mostly horizontally oriented near the centre of a floor slab and more vertically oriented near the edge; here the alignment with the formwork dominates. The fibre orientation distributions are characterized by several orientation parameters as quantitative measures for the alignment. On the practical side, this method has the potential to be incorporated into the development and production process of SFRC structures to verify how the fibres contribute to capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang Y, Zureick AH, Cho BS, Scott DE (1994) J Mater Sci 29:4191. doi:10.1007/BF00414198

    Article  CAS  Google Scholar 

  2. Purnell P, Buchanan AJ, Short NR, Page CL, Majumdar AJ (2000) J Mater Sci 35:4653. doi:10.1023/A:1004882419034

    Article  CAS  Google Scholar 

  3. Tejchman J, Kozicki J (2010) Experimental and theoretical investigations of steel-fibrous concrete. Springer series in geomechanics and geoengineering, 1st edn. Springer, Berlin

  4. Beaumont PWR, Aleszka JC (1978) J Mater Sci 13:1749. doi:10.1007/BF00548738

    Article  CAS  Google Scholar 

  5. Mangat PS, Motamedi Azari M (1985) Journal of Materials Science, 20:1119.doi:10.1007/BF00585757

    Article  Google Scholar 

  6. Zollo RF (1997) Cem Concr Compos 19(2):107. doi:10.1016/S0958-9465(96)00046-7

    Article  CAS  Google Scholar 

  7. Weiler B, Grosse C (1996) Otto Graf J 7:116. http://www.mpa.uni-stuttgart.de/publikationen/otto_graf_journal/ogj_1996/weiler/index.html. Accessed 5 April 2012

  8. Laranjeira F, Molins C, Aguado A (2010) Cem Concr Res 40(10):1471. doi:10.1016/j.cemconres.2010.05.005

    Article  CAS  Google Scholar 

  9. Laranjeira de Oliveira F (2010) Design-oriented constitutive model for steel fiber reinforced concrete. PhD Thesis, Universitat Politecnica de Catalunya. http://www.tdx.cat/TDX-0602110-115910. Accessed 5 April 2012

  10. Pupurs A (2011) Load bearing capacity prediction of steel fiber reinforced concrete elements subjected to bending loads. PhD Thesis, Riga Technical University, Faculty of Civil Engineering, Institute of Structural Engineering and Reconstruction

  11. Krasnikovs A, Kononova O, Khabbaz A, Machanovsky E, Machanovsky A (2011) World Acad Sci Eng Technol 59:988

    Google Scholar 

  12. Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete. PhD Thesis, Technische Universiteit Delft. http://repository.tudelft.nl/view/ir/uuid:07a817aa-cba1-4c93-bbed-40a5645cf0f1. Accessed 5 April 2012

  13. Lim D, Oh B (1999) Eng Struct 21(10):937. doi:10.1016/S0141-0296(98)00049-2

    Article  Google Scholar 

  14. Schnell J, Breit W, Schuler F (2011) In: Sruma V (ed) Proceedings of the fib symposium Prague 2011, p 583

  15. Rao TG, Seshu DR (2005) Cem Concr Compos 27(4):493. doi:10.1016/j.cemconcomp.2004.03.006

    Article  CAS  Google Scholar 

  16. Ferrara L, Meda A (2006) Mater Struct 39:411. doi:10.1617/s11527-005-9017-4

    Article  Google Scholar 

  17. Mohammadi Y, Singh S, Kaushik S (2008) Constr Build Mater 22(5):956. doi:10.1016/j.conbuildmat.2006.12.004

    Article  Google Scholar 

  18. Sivakumar A, Santhanam M (2007) Cem Concr Compos 29(7):575. doi:10.1016/j.cemconcomp.2007.03.005

    Article  CAS  Google Scholar 

  19. Pfyl T (2002) Tragverhalten von stahlfaserbeton. PhD Thesis, Eidgenössische Technische Hochschule Zürich

  20. Granju JK, Ringot E (1989) Acta Stereol 8:579

    Google Scholar 

  21. Wuest J, Denarié E, Brühwiler E, Tamarit L, Kocher M, Gallucci E (2009) Exp Tech 33(5):50. doi:10.1111/j.1747-1567.2008.00420.x

    Article  Google Scholar 

  22. Le TH, Dumont P, Orgéas L, Favier D, Salvo L, Boller E (2008) Composites A 39(1):91. doi:10.1016/j.compositesa.2007.08.027

    Article  Google Scholar 

  23. Dumont P, Corre SL, Orgéas L, Favier D (2009) J Non-Newton Fluid Mech 160(2–3):76. doi:10.1016/j.jnnfm.2009.03.001

    Article  CAS  Google Scholar 

  24. Laranjeira F, Grünewald S, Walraven J, Blom K, Molins C, Aguadoa A (2011) Mater Struct 44:1093. doi:10.1617/s11527-010-9686-5

    Article  Google Scholar 

  25. Eiduks M, Krasnikovs A, Dunskis E, Kononova O (2010) Sci J Riga Tech Univ, 33:98. https://ortus.rtu.lv/science/lv/publications/8346. Accessed 5 April 2012

  26. Ozyurt N, Mason TO, Shah SP (2007) Measuring, monitoring and modeling concrete properties. Springer, Berlin, p 285. doi:10.1007/978-1-4020-5104-3

  27. Ferrara L, Faifer M, Toscani S (2011) J Mater Struct 45(4):575. doi:10.1617/s11527-011-9793-y

    Google Scholar 

  28. Barnett S, Lataste JF, Parry T, Millard S, Soutsos M (2010) Mater Struct 43:1009. doi:10.1617/s11527-009-9562-3

    Article  CAS  Google Scholar 

  29. Taya M, Aresenault RJ (1989) Metal matrix composites: thermomechanical behavior. Pergamon Press, Oxford

    Google Scholar 

  30. Becker E, Bürger W (1975) Kontinuumsmechanik. Teubner Studienbücher, Stuttgart

    Google Scholar 

  31. Herrmann H, Eik M (2011) Proc Est Acad Sci 60(3):179. doi:10.3176/proc.2011.3.06

    Article  CAS  Google Scholar 

  32. Papenfuss C (1995) Contribution to a continuum theory of two dimensional liquid crystals. Wissenschaft-und Technik Verlag, Berlin

    Google Scholar 

  33. Ehrentraut H (1996) A unified mesoscopic continuum theory of uniaxial and biaxial liquid crystals. Wissenschaft-und Technik Verlag, Berlin

    Google Scholar 

  34. Ehrentraut H, Muschik W, Papenfuss C (1996) Concepts of continuum thermodynamics—5 lectures on fundamentals, methods and examples. Sekcja Poligrafi Politechniki Swietokrzyskiej, Kielce

    Google Scholar 

  35. Herrmann H, Engelbrecht J (2010) J Non-Equilib Thermodyn 35(3):337. doi:10.1515/JNETDY.2010.021

    Article  Google Scholar 

  36. Chalencon F, Orgéas L, Dumont P, Foray G, Cavaillé J, Maire E, Rolland du Roscoat S (2010) Rheol Acta 49:221. doi:10.1007/s00397-009-0393-5

    Article  CAS  Google Scholar 

  37. Hess S (1976) Z Naturforsch A 31a:1034

  38. Pardowitz I, Hess S (1980) Physica A 100(3):540. doi:10.1016/0378-4371(80)90166-1

    Article  Google Scholar 

  39. Steuer H (2004) Thermodynamical properties of a model liquid crystal. PhD Thesis, TU Berlin. http://opus.kobv.de/tuberlin/volltexte/2004/919. Accessed 5 April 2012

  40. Waldmann L (1963) Z Naturforsch A 18a:1033

  41. Hess S (1975) Z Naturforsch A 30a:728

  42. Buffiere J, Maire E, Adrien J, Masse J, Boller E (2010) Exp Mech 50:289

    Article  Google Scholar 

  43. Stroeven P, Hu J (2006) Mater Struct 39:127. doi:10.1617/s11527-005-9031-6

    Article  CAS  Google Scholar 

  44. Eik M, Herrmann H (2012) Proc Est Acad Sci 61:128. doi:10.3176/proc.2012.2.05

    Article  CAS  Google Scholar 

  45. Feldkamp L, Davis L, Kress J (1984) J Opt Soc Am 1(6):612

    Article  Google Scholar 

  46. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Biophotonics Int 11(7):36

    Google Scholar 

  47. Weickert J, ter Haar Romeney BM, Viergever MA (1998) IEEE Trans Image Process 7(3):398

    Article  CAS  Google Scholar 

  48. Lemon J (2006) R-News 6(4):8. http://CRAN.R-project.org/doc/Rnews. Accessed 5 April 2012

  49. Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A (2011) R package version 1.5-25. e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. http://CRAN.R-project.org/package=e1071. Accessed 5 April 2012

  50. Poncet P (2010) R package version 1.14, modeest: mode estimation. http://CRAN.R-project.org/package=modeest. Accessed 5 April 2012

  51. Adler D, Murdoch D (2010) rgl: 3D visualization device system, R package version 0.91. http://CRAN.R-project.org/package=rgl. Accessed 5 April 2012

  52. Wuertz D, many others, see the SOURCE file (2009) fMultivar: multivariate market analysis, R package version 2100.76. http://CRAN.R-project.org/package=fMultivar. Accessed 5 April 2012

  53. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. ISBN 3-900051-07-0. Accessed 5 April 2012

  54. Herrmann H, Eik M (2011) In: Presented at ICCS 16, 30 Juni 2011, Porto

  55. Agostinelli C, Lund U (2011) R package circular : circular statistics (version 0.4-3). CA: Department of Environmental Sciences, Informatics d Statistics, Ca’ Foscari University, Venice. UL: Department of Statistics, California Polytechnic State University, San Luis Obispo. https://r-forge.r-project.org/projects/circular. Accessed 5 April 2012

  56. Sekhon JS (2010) Matching: multivariate and propensity score matching with balance optimization, R package version 4.7-11. http://CRAN.R-project.org/package=Matching. Accessed 5 April 2012

  57. Delignette-Muller ML, Pouillot R, Denis JB, Dutang C (2010) fitdistrplus: help to fit of a parametric distribution to non-censored or censored data. R package version 0.1-3. http://cran.r-project.org/web/packages/fitdistrplus/index.html. Accessed 5 April 2012

  58. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York. http://www.stats.ox.ac.uk/pub/MASS4, ISBN 0-387-95457-0. Accessed 5 April 2012

  59. Stephenson AG (2002) R News 2(2):31–32. http://CRAN.R-project.org/doc/Rnews. Accessed 5 April 2012

  60. Pouillot R, Delignette-Muller ML (2010) Int J Food Microbiol 142(3):330. doi:10.1016/j.ijfoodmicro.2010.07.011

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the developers of open source software, particularly the developers of the R packages and ImageJ, that have been used in this research. Furthermore, the authors thank Rudus OY for providing the floor slabs and support. We thank the reviewers for their helpful comments and for pointing to [14, 2123, 36, 42]. Supported by ‘The Doctoral Programme of the Built Environment’ (RYM-TO) funded through the Academy of Finland and the Ministry of Education, the Alexander von Humboldt Foundation in form of a Feodor-Lynen-Fellowship for H.H. and the Estonian Ministry of Education and Research is gratefully acknowledged. J.-P. S. would like to thank the National Doctoral Programme in Materials Physics for financial support. A.K. would like to thank the Väisälä Foundation and the Academy of Finland for financial support. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. PERG04-GA-2008-238191 (project ESTwave). Compiled with the assistance of the Tiger University Program of the Estonian Information Technology Foundation (VisPar system, EITSA Grant 10-03-00-24). This research was supported by the European Union through the European Regional Development Fund, in particular through funding for the ‘Centre for Nonlinear Studies’ as an Estonian National Centre of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suuronen, JP., Kallonen, A., Eik, M. et al. Analysis of short fibres orientation in steel fibre-reinforced concrete (SFRC) by X-ray tomography. J Mater Sci 48, 1358–1367 (2013). https://doi.org/10.1007/s10853-012-6882-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6882-4

Keywords

Navigation