Skip to main content
Log in

Investigation of galvanic corrosion between AISI 1018 carbon steel and CFRPs modified with multi-walled carbon nanotubes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, we investigate the effect of modified carbon fiber-reinforced polymer (CFRP) composites when galvanically coupled with AISI 1018 carbon steel. Two different resins were used to manufacture the CFRPs: neat epoxy resin, and epoxy resin modified with multi-walled carbon nanotubes (MWCNTs). The specimens of composite (the cathode of the galvanic cell) and metal (the anode of the galvanic cell) were paired and immersed in electrolyte (NaCl solution, 2 % by weight) at 40 °C, to simulate a corrosive environment and accelerate the electrochemical reaction. Results of corrosion rate (CR) and mass loss rate (MR) were obtained, and the electrical resistances of the CFRPs were also measured. This new study shows that the MWCNTs do not have a statistically significant impact on the corrosion and mass loss rate results, and that both types of CFRP composites have statistically the same electrical resistance. Therefore, common methods used in the engineering practice in conventional hybrid CFRP/steel joints and repairs may be sufficient to delay galvanic corrosion, as there is no increased liability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schnerch D, Rizkalla S (2008) J Bridge Eng 13(2):192. doi:10.1061/(ASCE)1084-0702(2008)13:2(192)

    Article  Google Scholar 

  2. Ekiz E, El-Tawil S, Parra-Montesinos G, Goel S (2004) In: Proceedings of the 13th world conference on earthquake engineering. Vancouver, Canada

  3. Ekiz E, El-Tawil S (2006) In: Proceedings of the 8th U.S. national conference on earthquake engineering. NCEE, San Francisco

  4. El-Tawil S, Ekiz E (2009) J Struct Eng 135(5):530. doi:10.1061/(ASCE)ST.1943-541X.0000003

    Article  Google Scholar 

  5. Harries KA, Peck AJ, Abraham EJ (2009) Thin Wall Struct 47(10):1092. doi:10.1016/j.tws.2008.10.007

    Article  Google Scholar 

  6. Jones SC, Civjan SA (2003) J Compos Constr 7(4):331. doi:10.1061/(ASCE)1090-0268(2003)7:4(331)

    Article  CAS  Google Scholar 

  7. Phares BM, Wipf TJ, Klaiber FW, Abu-Hawash A, Lee YS (2003) In: Proceedings of the 2003 mid-continent transportation research symposium. Iowa State University, Ames

  8. Narmashiri K, Sulong NHR, Jumaat MZ (2011) Int J Phys Sci 6(7):1620

    Google Scholar 

  9. Tucker WC, Brown R (1989) J Compos Mater 23(4):389. doi:10.1177/002199838902300406

    Article  CAS  Google Scholar 

  10. Tavakkolizadeh M, Saadatmanesh H (2001) J Compos Constr 5(3):200. doi:10.1061/(ASCE)1090-0268(2001)5:3(200)

    Article  CAS  Google Scholar 

  11. Zitter H, Pauluzzi K (1993) J Mater Sci Mater Med 4:159

    Article  CAS  Google Scholar 

  12. Cortada M, Giner Ll, Costa S, Gil FJ, Rodríguez D, Planell JA (2000) J Mater Sci Mater Med 11:287

    Article  CAS  Google Scholar 

  13. Lin YC, Zhong J (2008) J Mater Sci 43:3072. doi:10.1007/s10853-007-2320-4

    Article  CAS  Google Scholar 

  14. Waizy H, Seitz J-M, Reifenrath J, Weizbauer A, Bach F-W, Meyer-Lindenberg A, Denkena B, Windhagen H (2012) J Mater Sci. doi:10.1007/s10853-012-6572-2

  15. van Drunen J, Zhao B, Jerkiewicz G (2011) J Mater Sci 46:5931. doi:10.1007/s10853-011-5548-y

    Article  Google Scholar 

  16. Zhang J, Gu Y, Guo Y, Ning C (2012) J Mater Sci 47:5197. doi:10.1007/s10853-012-6403-5

    Article  CAS  Google Scholar 

  17. Tawfik Q, Karunasena W (2010) In: Proceedings of the 2010 southern region engineering conference. SREC, Toowoomba

  18. Schnerch D, Stanford K, Sumner E, Rizkalla S (2005) In: Proceedings of the international symposium on bond behaviour of FRP in structures. BBFS, Hong Kong, p 435

  19. Rizkalla S (2004) In: Proceedings of COMPOSITES 2004, convention and trade show, American composites manufacturers association. CICE, Tampa

  20. Baldan A (2004) J Mater Sci 39:4729. doi:10.1023/B:JMSC.0000035317.87118.ab

    Article  CAS  Google Scholar 

  21. Mertz DR, Gillespie JW (1996) Rehabilitation of steel bridge girders through the application of composite materials, NCHRP report no. 93-ID 11. Transportation Research Board, Washington, DC

  22. Hollaway LC, Cadei J (2002) Prog Struct Eng Mat 4(2):131. doi:10.1002/pse.112

    Article  Google Scholar 

  23. Seica MV, Packer JA (2007) Compos Struct 80:440. doi:10.1016/j.compstruct.2006.05.029

    Article  Google Scholar 

  24. Okeil AM, Bingol Y, Ferdous MDR (2009) A novel technique for stiffening steel structures, FHWA report no. FHWA/LA.08/441. Louisiana Transportation Research Centre, Baton Rouge

  25. Thostenson ET, Chou T-W (2006) Adv Mater 18(21):2837. doi:10.1002/adma.200600977

    Article  CAS  Google Scholar 

  26. Thostenson ET, Chou T-W (2008) Nanotechnol 19(21):215713. doi:10.1088/0957-4484/19/21/215713

    Article  Google Scholar 

  27. Lim AS, Melrose ZR, Thostenson ET, Chou T-W (2011) Compos Sci Technol 71:1183. doi:10.1016/j.compscitech.2010.10.009

    Article  CAS  Google Scholar 

  28. Bily MA, Kwon YW, Pollak RD (2010) Appl Compos Mater 17:347. doi:10.1007/s10443-009-9124-4

    Article  CAS  Google Scholar 

  29. Chung DDL (2004) J Mater Sci 39:2645. doi:10.1023/B:JMSC.0000021439.18202.ea

    Article  CAS  Google Scholar 

  30. Park J-M, Kim D-S, Kim S-J, Kim P-G, Yoon D-J, DeVries KL (2007) Compos B Eng 38:847. doi:10.1016/j.compositesb.2006.12.004

    Article  Google Scholar 

  31. Alexopoulos ND, Bartholome C, Poulin P, Marioli-Riga Z (2010) Compos Sci Technol 70:260. doi:10.1016/j.compscitech.2009.10.017

    Article  CAS  Google Scholar 

  32. Kostopoulos V, Vavouliotis A, Karapappas P, Tsotra P, Paipetis A (2009) J Intell Mater Syst Struct 20:1025. doi:10.1177/1045389X08099993

    Article  CAS  Google Scholar 

  33. Zhang W, Sakalkar V, Koratkar N (2007) Appl Phys Lett 91:133102. doi:10.1063/1.2783970

    Article  Google Scholar 

  34. Rausch J, Mader E (2010) Compos Sci Technol 70:2023. doi:10.1016/j.compscitech.2010.08.003

    Article  CAS  Google Scholar 

  35. Loh KJ, Hou TC, Lynch JP, Kotov NA (2007) In: Proceedings of the 6th international workshop on structural health monitoring. Stanford University, Stanford

  36. Ranieri C, Fabbrocino G, Song Y, Shanov V (2011) In: International workshop on smart materials & structures and NDT in aerospace conference. Pratt & Whitney Corporation, Montreal

  37. Aung NN, Zhou W, Goh CS, Nai SML, Wei J (2010) Corros Sci 52:1551

    Article  CAS  Google Scholar 

  38. Fukuda H, Szpunar JA, Kondoh K, Chromik R (2010) Corros Sci 52:3917

    Article  CAS  Google Scholar 

  39. Turhan MC, Li Q, Jha H, Singer RF, Virtanen S (2011) Electrochim Acta 56:7141

    Article  CAS  Google Scholar 

  40. Ireland R, Arronche L, La Saponara V (2012) Compos B Eng 43(2):183. doi:10.1016/j.compositesb.2011.08.001

    Article  CAS  Google Scholar 

  41. Yesil S, Winkelmann C, Bayram G, La Saponara V (2010) Mater Sci Eng 527(27–28):7340. doi:10.1016/j.msea.2010.07.105

    Google Scholar 

  42. Arronche L, La Saponara V, Yesil S, Bayram G (2012) J Appl Polym Sci. doi:10.1002/app.38448

  43. ASTM (2003) Conducting and evaluating galvanic corrosion tests in electrolytes, ASTM G71-81 (reapproved 2003). ASTM International, West Conshohocken

  44. ASTM (2004) Calculation of corrosion rates from electrochemical measurements, ASTM G102-89 (reapproved 2004). ASTM International, West Conshohocken

  45. ASTM (2004) Standard practice of laboratory immersion corrosion testing of metals, ASTM G31-72 (reapproved 2004). ASTM International, West Conshohocken

  46. ASTM (2003) Standard practice for preparing, cleaning and evaluating corrosion test specimens, ASTM G1-03. ASTM International, West Conshohocken

  47. Stansbury E, Buchanan RA (2000) Fundamentals of electrochemical corrosion. ASM International, Materials Park

    Google Scholar 

Download references

Acknowledgements

This article is based upon the research supported by the National Science Foundation to V. La Saponara, through CAREER Grant CMMI-0642814. Partial support from the Department of Civil and Environmental Engineering at UC Davis to L. Cheng is also appreciated. The authors thank Mr. Robert Ireland, for his valuable discussion on the electrochemical corrosion tests, and Mr. Henry Calanchini and Dr. Kenneth J. Loh of the Department of Civil and Environmental Engineering at UC Davis, for their assistance with the equipment/supplies and the space allowed to be used during the electrochemical corrosion tests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valeria La Saponara or Lijuan Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arronche, L., Gordon, K., Ryu, D. et al. Investigation of galvanic corrosion between AISI 1018 carbon steel and CFRPs modified with multi-walled carbon nanotubes. J Mater Sci 48, 1315–1323 (2013). https://doi.org/10.1007/s10853-012-6876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6876-2

Keywords

Navigation