Skip to main content
Log in

Role of the Platinum Nanoclusters in the Iodide/Triiodide Redox System of Dye Solar Cells

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

The publication covers materials and cluster science aspects of the platinum counter electrode (CE) in the “monolithic type” dye sensitized solar cell systems (DSSC). Nanocluster based catalytic platinum layers are utilized for the iodide/triiodide reduction in different electrolytes. Various preparative methods have been applied for the preparation of platinum nanoparticles for the CE. The structure, properties, and performance of the different nanoparticles obtained by thermal decomposition of H2PtCl6, triorganohydroborate reduction of a platinum salt, reductive stabilization of Pt(acac)2 by trialkylaluminium, the “polyol method”, and the reduction of the H2PtCl6 by hydrogen are compared. The oxidation states of the platinum surface- and core-atoms were analyzed by X-Ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Near Edge Structure (XANES) respectively. Size and the crystalline structure of the particles were investigated by Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD). The charge transfer resistance of the different catalytic platinum layers resulted from the above mentioned preparative methods, was compared by electrochemical impedance spectroscopy (EIS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. T. Surek (2005). J. Cryst. Growth 275, 292

    Article  CAS  Google Scholar 

  2. M. Grätzel (2001). Nature 414, 338

    Article  Google Scholar 

  3. H. Gerischer (1972). Photochem. Photobiol. 16, 243

    Article  CAS  Google Scholar 

  4. R. Memming (1972). Photochem. Photobiol. 16, 325

    Article  CAS  Google Scholar 

  5. B. O’Regan, J. Moser, M. Anderson, M. Graetzel (1990). J. Phys. Chem. 94, 8720

    Article  CAS  Google Scholar 

  6. B. O’Regan, M. Grätzel (1991). Nature. 353, 737

    Article  CAS  Google Scholar 

  7. Y. Chiba (2005). Proceedings, 15th International Photovoltaic Science & Engineering Conference (PVSEC-15) Shanghai, China

  8. M. Grätzel (2004). J. Photochem. Photobiol. A 164, 3

    Article  CAS  Google Scholar 

  9. H. Greijer, L. Karlson, S. T. Lindquist, A. Hagfeldt (2001). Renewable Energy 23, 27

    Article  CAS  Google Scholar 

  10. G. Smestad, C. Bingozzi, R. Argazzi (1994). Sol. Energy Mater. Sol. Cells. 32, 259

    Article  CAS  Google Scholar 

  11. S. Burnside, S. Winkel, K. Brooks, V. Shklover, M. Grätzel, A. Hinsch, R. Kinderman, C. Bradbury, A. Hagfeldt, H. Pettersson (2000). J. Mater. Sci.: Mater. Electron. 11, 355

    Article  CAS  Google Scholar 

  12. M. Späth, P. M. Sommeling, J. A. M. van Roosmalen, H. J. P. Smit, N. P. G. van der Burg, D. R. Mahieu, N. J. Bakker, J. M. Kroon (2003). Prog. Photovolt: Res. Appl. 11, 207

    Article  CAS  Google Scholar 

  13. G. Khelashvili, S. Behrens, C. Weidenthaler, C. Vetter, A. Hinsch, R. Kern, K. Skupien, E. Dinjus, H. Bönnemann (2006). Thin Solid Films 511–512, 342

    Article  CAS  Google Scholar 

  14. R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F. M. Petrat, A. Prodi-Schwab, P. Lechner, W. Hoffmann (2006). Sol. Energy Mater. Sol. Cells 90, 1680

    Article  CAS  Google Scholar 

  15. R. Sastrawan, J. Renz, C. Prahl, J. Beier, A. Hinsch, R. Kern (2006). J. Photochem. Photobiol. A Chem. 178, 33

    Article  CAS  Google Scholar 

  16. N. Papageorgiou, W. F Maier, M. Grätzel (1997). J. Electrochem. Soc. 144, 876

    Article  CAS  Google Scholar 

  17. N. Papageorgiou (2004). Coord. Chem. Rev. 248, 1421

    Article  CAS  Google Scholar 

  18. A. Hauch, A. Georg (2001). Electrochim. Acta. 46, 3457

    Article  CAS  Google Scholar 

  19. V. A. Macagno, M. C. Giordano, A. J. Ariva (1969). Electrochim. Acta 14, 335

    Article  CAS  Google Scholar 

  20. K. J. Vetter, (1961) Electrochemische Kinetik Springer, Berlin

    Google Scholar 

  21. L. M. Dané, L. J. J. Janssen, J. G. Hoogland (1968). Electrochim. Acta 13, 507

    Article  Google Scholar 

  22. X. Fang, T. Ma, G. Guan, M. Akiyama, E. Abe (2004). J. Photochem. Photobiol. A: Chem. 164, 179

    Article  CAS  Google Scholar 

  23. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe (2004). J. Electroanal. Chem. 570, 257

    Article  CAS  Google Scholar 

  24. L. N. Lewis, K. H. Janora, J. Liu, S. Jie, and E. P Gasaway (2004). Proceedings of SPIE-Org. Photovolt. V, vol. 5520, p. 244

  25. W. B. Wang, Z. Luo, X. R. Xiao, Y. Lin, and Chin (2004). J. Chem. 22, 256

  26. J. M. Chen, Y. T. Ma, G. Q Wang, Z. P Wang, X. W Zhou, Y. Lin, X. P. Li, X. R. Xiao (2005). Chin. Sci. Bull. 50, 11

    Article  CAS  Google Scholar 

  27. S. S. Kim, K. W. Park, J. H. Yum, Y. E. Sung (2006). Sol. Energy Mater. Sol. Cells 90, 283

    Article  CAS  Google Scholar 

  28. H. Lindström, A. Holmberg, E. Magnusson, S. E. Lindquist, L. Malmqvist, A. Hagfeldt (2001). Nano Lett. 1, 97

    Article  CAS  Google Scholar 

  29. H. Lindström, G. Boschloo, S. E. Lindquist, A. Hagfeldt (2003). ACS Symposium Series. Molecules as Components of Electronic Devices 844, 123

    Google Scholar 

  30. T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, E. Abe (2004). J. Electroanal. Chem. 574, 77

    Article  CAS  Google Scholar 

  31. K. C. Mandal, A. Smirnov, D. Peramunage, R. D. Rauh (2003). Mater. Res. Soc. Symp. – Proceedings 737, 739

    CAS  Google Scholar 

  32. S. A. Haque, E. Palomares, H. M. Upadhyaya, L. Otley, R. J. Potter, A. B. Holmes, J. R. Durrant (2003). Chem. Commun. 9, 3008

    Article  CAS  Google Scholar 

  33. C. Longo, J. Freitas, M. A. De Paoli (2003). J. Photochem. Photobiol. A Chem. 159, 33

    Article  CAS  Google Scholar 

  34. Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida (2004). J. Photochem. Photobiol. A: Chem. 164, 153

    Article  CAS  Google Scholar 

  35. X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, E. Abe (2005). Thin Solid Films 472, 242

    Article  CAS  Google Scholar 

  36. Y. Saito, T. Kitamura, Y. Wada, S. Yanagida (2002). Chem. Lett. 10, 1060

    Article  Google Scholar 

  37. J. Halme, M. Toivola, A. Tolvanen, P. Lund (2006). Sol. Energy Mater. Sol. Cells 90, 872

    Article  CAS  Google Scholar 

  38. G. Q. Wang, R. F. Lin, M. Wang, C. N. Zhang, Y. Lin, X. R. Xiao, X. P. Li (2004). Chin. Chem. Lett. 15, 1369

    CAS  Google Scholar 

  39. S. C. Hao, L. Q. Fan, J. H. Wu, Y. F. Haung, J. M. Lin (2004). Chem. Res. Chinese Univ. 20, 205

    CAS  Google Scholar 

  40. K. M. Grätzel (1996). Sol. Energy Mater. Sol. Cells 44, 99

    Google Scholar 

  41. K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. I. Nakamura, K. Murata (2003) Sol. Energy Mater. Sol. Cells 79, 459

    Article  CAS  Google Scholar 

  42. K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida (2003) Chem. Lett. 32, 28

    Article  CAS  Google Scholar 

  43. S. Anadan, X. Wen, S. Yang (2005). Mater. Chem. Phys. 93, 30

    Google Scholar 

  44. E. Olsen, G. Hagen, S. E. Lindquist (2000). Sol. Energy Mater. Sol. Cells 63, 267

    Article  CAS  Google Scholar 

  45. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel (1993). J. Am. Chem. Soc. 115, 6382

    Google Scholar 

  46. A. Hagfeldt, M. Grätzel (2000). Mol. Photovoltaics. Accounts Chem. Res. 33, 269

    Article  CAS  Google Scholar 

  47. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Graetzel (2001). J. Am. Chem. Soc. 123, 1613

    Article  CAS  Google Scholar 

  48. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhote, H. Pettersson, A. Azam, M. Gratzel (1996). J. Electrochem. Soc. 143, 3099

    Article  CAS  Google Scholar 

  49. H. Pettersson, T. Gruszecki (2001). Solar Energy Mater. Solar Cells 70, 203

    Article  CAS  Google Scholar 

  50. R. Kern, N. Van Der Burg, G. Chmiel, J. Ferber, G. Hasenhindl, A. Hinsch, R. Kinderman, J. Kroon, A. Meyer, T. Meyer, R. Niepmann, J. Van Roosmalen, C. Schill, P. Sommeling, M. Spath, I. Uhlendorf (2001). Opto-Electron. Rev. 8, 284

    Google Scholar 

  51. A. Hinsch, J. M. Kroon, R. Kern, I. Uhlendorf, J. Holzbock, A. Meyer, J. Ferber (2001). Prog. Photovolt: Res. Appl. 9, 425

    Article  CAS  Google Scholar 

  52. H. Pettersson, T. Gruszecki, L. H. Johansson, P. Johander (2003). Solar Energy Mater. Solar Cells 77, 405

    Article  CAS  Google Scholar 

  53. E. Figgemeier, A. Hagfeldt (2004). Int. J. Photoenergy 6, 127

    Article  CAS  Google Scholar 

  54. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguch, M. Grätzel (2003). Nat. Mater. 2, 402

    Article  CAS  Google Scholar 

  55. P. M. Sommeling, M. Späth, H. J. P. Smit, N. J. Bakker, J. M. Kroon (2004). J. Photochem. Photobiol. A: Chem. 164, 137

    Article  CAS  Google Scholar 

  56. G. Wang, Y. Lin, X. R. Xiao, X. P. Li, W. Wang (2004). Surf. Interface Anal. 36, 1437

    Article  CAS  Google Scholar 

  57. S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Grätzel, D. R. Klug, J. R. Durrant (2000). J. Phys. Chem. B104, 538

    Google Scholar 

  58. H. Bönnemann, B. Korall, (1992). Angew. Chem., Int. Ed. 31, 1490

    Article  Google Scholar 

  59. H. Bönnemann, W Brijoux (1995). Nanostruct. Mater. 5, 135

    Article  Google Scholar 

  60. H. Bönnemann, W. Brijoux, R. Brinkmann, R. Fretzen, T. Joussen, R. Köppler, B. Korall, P. Neiteler, J. Richter (1994). J. Mol. Catal. 86, 129

    Article  Google Scholar 

  61. H. Bönnemann, G. Braun, W. Brijoux, R. Brinkmann, R Schulze, A. Tilling, K. Seevogel, K. Siepen (1996). J. Organomet. Chem. 520, 143

    Article  Google Scholar 

  62. H. Bönnemann, W. Brijoux, in A. Fürstner (ed.), Active Metals: Preparation, Characterization, Applications (VCH, New York, 1996), pp. 339–379

  63. H. Bönnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T Joussen, B. Korall, (1991). Angew. Chem., Int. Ed. 30, 1312

    Article  Google Scholar 

  64. H. Bönnemann, R. Brinkmann, R. Köppler, P Neiteler, J. Richter (1992). J. Adv. Mater. 4, 804

    Article  Google Scholar 

  65. H. Bönnemann, W. Brijoux, R. Brinkmann, E. Dinjus, R. Fretzen, T. Joussen, B. Korall, (1992). J. Mol. Catal. 74, 323

    Article  Google Scholar 

  66. H. Bönnemann, R. Brinkmann, P. Neiteler (1994). Appl. Organomet. Chem. 8, 361

    Article  Google Scholar 

  67. S. Kinge, H. Bönnemann (2005). Appl. Organomet. Chem. 19, 750

    Article  CAS  Google Scholar 

  68. H. Bönnemann, R. Richards, in W.A. Herrmann (ed.), Synthetic Methods of Organometallic and Inorganic Chemistry (Herrmann/Brauer), Catalysis vol. 10, (Georg Thieme Verlag, Stuttgart-New York 2002), pp. 209–224

  69. H. Bönnemann, U. Endruschat, J. Hormes, G. Köhl, S. Kruse, H. Modrow, R. Mörtel, K. S. Nagabhushana (2004). Fuel Cells 4, 297

    Article  CAS  Google Scholar 

  70. K. Angermund, M. Bühl, U. Endruschat, F. T. Mauschick, R. Mörtel, R. Mynott, B. Tesche, N. Waldöfner, H. Bönnemann, G. Köhl, H. Modrow, J. Hormes, E. Dinjus, F. Gassner, H. G. Haubold, T. Vad, M. Kaupp (2003). J. Phys. Chem. B107, 7507

    Google Scholar 

  71. K. Angermund, M. Bühl, E. Dinjus, U. Endruschat, F. Gassner, H. G. Haubold, J. Hormes, G. Köhl, F. T. Mauschick, H. Modrow, R. Mörtel, R. Mynott, B. Tesche, T. Vad, N. Waldöfner, H. Bönnemann (2002). Angew. Chem. Int. Ed. Eng. 41, 4041

    Article  CAS  Google Scholar 

  72. F. Wen, N. Waldofner, W. Schmidt, K. Angermund, H. Bonnemann, S. Modrow, S. Zinoveva, H. Modrow, J. Hormes, L. Beuermann, S. Rudenkiy, W. Maus-Friedrichs, V. Kempter, T. Vad, Haubold H. G. (2005) Eur. J. Inorg. Chem. 18, 3625

    Article  CAS  Google Scholar 

  73. F. Wen, H. Bonnemann, R. J. Mynott, B. Spliethoff, C. Weidenthaler, N. Palina, S. Zinoveva, H. Modrow (2005). Appl. Organomet. Chem. 19, 827

    Article  CAS  Google Scholar 

  74. M. Figlarz, F. Fiévet, and J. P. Lagier (1983). French patent No. 8221483

  75. F. Bonet, V. Delmas, S. Grugeon, R. Herrera-Urbina, P. Y. Silvert, K. Tekaia-Elhsissen (1999). NanoStruct. Mater. 11, 1277

    Article  CAS  Google Scholar 

  76. F. Fiévet, J. P. Lagier, B. Blin, B. Beaudoin, M. Figlarz (1989). Solid State Ionics 32/33, 198

    Article  Google Scholar 

Download references

Acknowledegment

This work is supported by the German Federal Ministry of Education and Research (BMBF) (grant # 01 SF 0304)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guram Khelashvili.

Additional information

Dedicated to Prof. Günter Schmid on the occasion of 70th anniversary

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bönnemann, H., Khelashvili, G., Behrens, S. et al. Role of the Platinum Nanoclusters in the Iodide/Triiodide Redox System of Dye Solar Cells. J Clust Sci 18, 141–155 (2007). https://doi.org/10.1007/s10876-006-0092-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-006-0092-7

Keywords

Navigation