Skip to main content
Log in

Reduction of fluid friction on the surface coated with TiO2 photocatalyst under UV illumination

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fluid friction in a cylindrical glass pipe coated with TiO2 was investigated before and after UV illumination. The crystalline phase of TiO2 was anatase. Its coating thickness was about 90 nm. The frictional drag was evaluated by measuring the pressure loss in the pipe. Before UV illumination, the pressure loss changed gradually from a laminar flow to the turbulent one in the transition range, where the Reynolds number was around 3,300. However, the pressure loss after UV illumination maintained a laminar flow until the Reynolds number was 6,000. The reduction rate of the frictional drag increased concomitantly with increasing flow velocity. Particle image velocimetry analysis revealed that the fluid friction would be reduced by suppressing unstable flow around the wall of the glass pipe. These results imply that highly hydrophilic TiO2 surface effectively reduced fluid friction in a large Reynolds number range effectively, and that suitable surface wettability for the reduction of the fluid friction depends on the flow velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Spikes H, Granick S (2003) Langmuir 19:5065

    Article  CAS  Google Scholar 

  2. Lager L (2003) J Phys Condens Mater 15:S19

    Article  Google Scholar 

  3. Zhu Y, Granick S (2002) Langmuir 18:10058

    Article  CAS  Google Scholar 

  4. Koo JM, Kleinstreuer C (2003) J Micromech Microeng 13:568

    Article  Google Scholar 

  5. Lauga E, Stone HA (2003) J Fluid Mech 489:55

    Article  Google Scholar 

  6. Priezjev NV, Troian SM (2006) J Fluid Mech 554:25

    Article  CAS  Google Scholar 

  7. Bocquet L, Barrat JL (2007) Soft Matter 3:685

    Article  CAS  Google Scholar 

  8. Rothstein JP (2009) Annu Rev Fluid Mech 42:89

    Article  Google Scholar 

  9. Mognetti BM, Kusumaatmaja H, Yeomans JM (2010) Faraday Discuss 146:153

    Article  CAS  Google Scholar 

  10. Kandlikar SG, Schmitt D, Carrano AL, Taylor JB (2005) Phys Fluids 17:100606

    Article  Google Scholar 

  11. Zhu Y, Granick S (2001) Phys Rev Lett 87:096105-1-4

    Google Scholar 

  12. Tretheway D, Meinhart C (2002) Phys Fluids 14:L9

    Article  CAS  Google Scholar 

  13. Gogte S, Vorobieff P, Truesdell R, Mammoli A, van Swol F, Shah P, Brinker CJ (2005) Phys Fluids 17:051701

    Article  Google Scholar 

  14. Hodges SR, Jensen OE, Rallison JM (2004) J Fluid Mech 512:95

    Article  CAS  Google Scholar 

  15. Nakajima A, Hashimoto K, Watanabe T (2001) Monatsh Chem 132:31

    Article  CAS  Google Scholar 

  16. Feng X, Jiang L (2006) Adv Mater 18:3063

    Article  CAS  Google Scholar 

  17. Blossey R (2003) Nat Mater 2:301

    Article  CAS  Google Scholar 

  18. Ruckenstein E, Rajora P (1983) J Colloid Interface Sci 96(2):488

    Article  CAS  Google Scholar 

  19. Huang DM, Sendner C, Horinek D, Netz RR, Bocquet L (2008) Phys Rev Lett 101:226101

    Article  Google Scholar 

  20. Watanabe K, Udagawa Y, Udagawa H (1999) J Fluid Mech 381:225

    Article  CAS  Google Scholar 

  21. Ou J, Perot B, Rothstein JP (2004) Phys Fluids 16:4635

    Article  CAS  Google Scholar 

  22. Choi CH, Ilmanella U, Kim J, Ho CM, Kim CJ (2006) Phys Fluids 18:087105

    Article  Google Scholar 

  23. Sakai M, Yanagisawa T, Nakajima A, Kameshima Y, Okada K (2009) Langmuir 25(1):13

    Article  CAS  Google Scholar 

  24. Sakai M, Nakajima A, Fujishima A (2010) Chem Lett 39(5):482

    Article  CAS  Google Scholar 

  25. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Nature 388:431

    Article  CAS  Google Scholar 

  26. Fujishima A, Hashimoto K, Watanabe T (1999) TiO2 photocatalysis: fundamentals and applications. BKC Inc., Tokyo, p 66

    Google Scholar 

  27. Zubkov T, Stahl D, Thompson TL, Panayotov D, Diwald O, Yates JT (2005) J Phys Chem B 109:15454

    Article  CAS  Google Scholar 

  28. Wang CY, Groenzin H, Shultz MJ (2003) Langmuir 19:7330

    Article  CAS  Google Scholar 

  29. Sakai N, Fujishima A, Watanabe T, Hashimoto K (2003) J Phys Chem B 107:1028

    Article  CAS  Google Scholar 

  30. Miyauchi M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Chem Mater 12:3

    Article  CAS  Google Scholar 

  31. Nakamura R, Ueda K, Sato S (2001) Langmuir 17:2298

    Article  CAS  Google Scholar 

  32. Okudaira K, Kato T, Isobe T, Matsushita S, Kogure T, Nakajima A (2011) J Photochem Photobiol A 222:64

    Article  CAS  Google Scholar 

  33. Willert CE, Gharib M (1991) Exp Fluids 10:181

    Article  Google Scholar 

  34. Westerweel J (1997) Meas Sci Technol 8:1379

    Article  CAS  Google Scholar 

  35. Sakai M, Hashimoto A, Yoshida N, Suzuki S, Kameshima Y, Nakajima A (2007) Rev Sci Inst 78:045103-1-5

    Google Scholar 

  36. Watanabe T, Fukayama S, Miyauchi M, Fujishima A, Hashimoto K (2000) J Sol Gel Sci Technol 19:71

    Article  CAS  Google Scholar 

  37. Holman JP (2002) Heat transfer. McGraw-Hill, New York, p 207

    Google Scholar 

  38. Goertz MP, Houston JE, Zhu XY (2007) Langmuir 23:5491

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Project to Create Photocatalyst Industry for Recycling-oriented Society of the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Nakajima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 465 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, M., Nishimura, M., Morii, Y. et al. Reduction of fluid friction on the surface coated with TiO2 photocatalyst under UV illumination. J Mater Sci 47, 8167–8173 (2012). https://doi.org/10.1007/s10853-012-6712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6712-8

Keywords

Navigation