Skip to main content
Log in

Viscosity and Solidification of the Al100 – хCuх (х = 5, 10, 17, 25 at %) Melts

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract—

The method of damped torsional vibrations in the temperature range from liquidus to 1200°C was used to study the temperature dependences of the viscosity of melts of the Al–Cu binary system containing 5, 10 (hypoeutectic), 17 (eutectic), and 25 (hypeutectic) at % of copper. For all compositions near a temperature of 800°C, a deviation of the viscosity polytherms from the Arrhenius dependence was found, which is associated with the features of the structural state of the melts. A comparative study of samples obtained by melt spinning with different structural states, depending on temperature (750 and 1200°C) and alloy composition, was carried out using X-ray diffraction analysis and electron microscopy. In a hypoeutectic alloy with a higher copper content, regardless of the melt quenching temperature, a more supersaturated Al(Cu) solid solution is formed. The temperature treatment of melts before quenching affects the structure and mechanical characteristics of solid samples formed during spinning. All samples are crystalline, represented by α-Al, Al2Cu phases. The effect of heat treatment of melts on the morphology, size, and lattice periods of the structural constituents of alloys of all compositions is shown. The selected modes are reflected in the average value of the microhardness of the alloys. Hypoeutectic alloys with a higher copper content have higher microhardness values due to a more dispersed structure, a larger volume fraction of finely dispersed eutectics, and a more supersaturated Al(Cu) solid solution. In hypereutectic alloys, higher values of microhardness are in alloys with a higher concentration due to a larger amount of the hard component—Al2Cu aluminides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. I. G. Brodova, P. S. Popel, N. M. Barbin, and N. A. Vatolin, Melts as the Basis for the Formation of the Structure and Properties of Aluminum Alloys (Ural Otdel. RAN, Yekaterinburg, 2005) [in Russian]. https://www.elibrary.ru/item.aspıd=19603676

  2. B. A. Baum, E. A. Klimenkov, B. A. Tyagunov, and Yu. A. Bazin, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 11, 54 (1984).

  3. State Diagrams of Binary Metal Systems, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1 [in Russian].

    Google Scholar 

  4. D. K. Lykasov and O. A. Chikova, Rasplavy, No. 4, 31 (2007).

  5. N. Y. Konstantinova, P. S. Popel’, and D. A. Yagodin, High Temp. 47, 336 (2009).

    Article  Google Scholar 

  6. Minhua Sun and Xiufang Bian, Mater. Lett. 56, 620 (2002). https://doi.org/10.1016/S0167-577X(02)00565-7

    Article  Google Scholar 

  7. V. M. Zamyatin, Ya. A. Nasyirov, N. I. Klassen, Yu. A. Bazin, and B. A. Baum, Zh. Fiz. Khim. 60, 243 (1986).

    Google Scholar 

  8. R. M. Khusnutdinov, A. V. Mokshin, S. G. Men’shikova, A. L. Bel’tyukov, and V. I. Lad’yanov, J. Exp. Theor. Phys. 122, 859 (2016). https://doi.org/10.1134/S1063776116040166

    Article  ADS  Google Scholar 

  9. S. G. Men’shikova, A. L. Bel’tyukov, and V. I. Lad’yanov, Vestn. Kazan. Tekhnol. Univ. 17 (23), 140 (2014).

    Google Scholar 

  10. S. Li, Z. Ren, W. Ren, et al., Prog. Electromagn. Res. Lett. 18, 71 (2010). https://doi.org/10.2528/PIERL10061301

    Article  Google Scholar 

  11. V. A. Plotnikov, Tech. Phys. Lett. 27, 632 (2001).

    Article  ADS  Google Scholar 

  12. S. Habibi, B. Jaleh, A. Namdarmanesh, and M. Shamlo, Mater. Sci. Appl., No. 5, 491 (2014). https://doi.org/10.4236/msa.2014.58053

  13. A. L. Bel’tyukov and V. I. Lad’yanov, Instrum. Exp. Tech. 51, 304 (2008). https://doi.org/10.1134/S0020441208020279

    Article  Google Scholar 

  14. A. R. Kurochkin, P. S. Popel’, D. A. Yagodin, A. V. Borisenko, and A. V. Okhapkin, High Temp. 51, 197 (2013). https://doi.org/10.1134/S0018151X13020120

    Article  Google Scholar 

  15. S. G. Men’shikova, Khim. Fiz. Mezosk. 23 (1), 80 (2021). https://doi.org/10.15350/17270529.2021.1.8

    Article  Google Scholar 

  16. I. S. Miroshnichenko, Hardening from the Liquid State (Metallurgiya, Moscow, 1982) [in Russian]. https://www.studmed.ru/miroshnichenko-i-s-zakalka-iz-zhidkogo-sostoyaniya_5bbbe80049b.html.

  17. N. Yu. Konstantinova, Cand. Sci. (Phys. Math.) Dissertation (Yekaterinburg, 2009).

  18. S. G. Menshikova, I. G. Shirinkina, I. G. Brodova, et al., Met. Sci. Heat Treatm. 60 (3), 177 (2018). https://doi.org/10.1007/s11041-018-0257-7

    Article  ADS  Google Scholar 

  19. D. S. Kanibolotsky, O. A. Beloborodova, N. V. Kotova, and V. V. Lisnyak, J. Therm. Anal. Calorim. 70, 975 (2002). https://doi.org/10.1023/A:1022285010138

    Article  Google Scholar 

  20. P. P. Arsentiev and L. A. Koledov, Metal Melts and Their Properties (Metallurgiya, Moscow, 1976) [in Russian]. https://www.studmed.ru/arsentev-pp-koledov-la-metallicheskie-rasplavy-i-ih-svoystva_15656bb50cc.html.

    Google Scholar 

  21. S. Mudry, I. Shtablavyi, and I. Shcherba, Arch. Mater. Sci. Eng. 34, 14 (2008). https://www.researchgate.net/publication/26872933.

    Google Scholar 

  22. A. L. Bel’tyukov, S. G. Men’shikova, V. I. Lad’yanov, and A. Yu. Korepanov, High Temp. 54, 667 (2016). https://doi.org/10.7868/S0040364416050070

    Article  Google Scholar 

  23. A. L. Bel’tyukov, S. G. Menshikova, and V. I. Lad’yanov, J. Non-Cryst. Solids 410, 1 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.11.028

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

These studies were performed using equipment of Core shared research facilities “Center of physical and physical-chemical methods of analysis, investigations of properties and characteristics surface, nanostructures, materials and samples” of the Udmurt Federal Research Center, Ural branch of the Russian Academy of Sciences.

The author is grateful to A.Yu. Korepanov for his help in the performation of viscometric experiment and to A.A. Suslov for the preparation of fast-quenched ribbons and useful discussions.

Funding

This work was supported by the Russian Science Foundation, project no. 22-22-00674.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Menshikova.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menshikova, S.G. Viscosity and Solidification of the Al100 – хCuх (х = 5, 10, 17, 25 at %) Melts. Phys. Solid State 64, 432–439 (2022). https://doi.org/10.1134/S1063783422090037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422090037

Keywords:

Navigation