Skip to main content
Log in

Nanosphere assembled mesoporous titanium dioxide with advanced photocatalystic activity using absorbent cotton as template

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanosphere assembled mesoporous TiO2 products with large specific surface area and high crystallinity were prepared by a combined hydrothermal and post-heating process, where absorbent cotton was used as a template. The as-synthesized samples were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption/desorption, Fourier transform infrared spectroscopy, and UV–Vis diffuse reflectance spectroscopy. Results indicate that the obtained products exhibit a unique 3D mesoporous structure and demonstrate a significantly improved photocatalytic performance, which can be attributed to concurrent effects of high surface area, the presence of accessible mesopores channels and high crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roy B, Li L, Aich S (2011) J Mater Sci 46:7611. doi:10.1007/s10853-011-5738-7

    CAS  Google Scholar 

  2. Xiang LQ, Zhao XP, Yin JB, Fan BL (2012) J Mater Sci 47:1436. doi:10.1007/s10853-011-5924-7

    CAS  Google Scholar 

  3. Ylhäinen EK, Nunes MR, Silvestre AJ, Monteiro OC (2012) J Mater Sci 47:4305. doi:10.1007/s10853-012-6281-x

    Google Scholar 

  4. Bahnemann W, Muneer M, Haque MM (2007) Catal Today 124:133

    CAS  Google Scholar 

  5. Ouyang JL, Chang ML, Li XJ (2012) J Mater Sci 47:4187. doi:10.1007/s10853-012-6273-x

    CAS  Google Scholar 

  6. Wojtoniszak M, Zielinska B, Chen XC et al (2012) J Mater Sci 47:3185. doi:10.1007/s10853-011-6153-9

    CAS  Google Scholar 

  7. He ZL, Zhu ZF, Li JQ et al (2011) J Hazard Mater 190:133

    CAS  Google Scholar 

  8. Kang JG, Sohn YK (2012) J Mater Sci 47:824. doi:10.1007/s10853-011-5860-6

    CAS  Google Scholar 

  9. Xu XJ, Fang XS, Zhai TY et al (2011) Small 7:445

    CAS  Google Scholar 

  10. Vinu R, Madras G (2009) Appl Catal A 366:130

    CAS  Google Scholar 

  11. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) J Catal 203:82

    CAS  Google Scholar 

  12. Yu JC, Ho WK, Yu JG, Hark SK, Lu K (2003) Langmuir 19:3889

    CAS  Google Scholar 

  13. Macwan DP, Dave PN, Chaturvedi S (2011) J Mater Sci 46:3669. doi:10.1007/s10853-011-5378-y

    CAS  Google Scholar 

  14. Liu YH, Liu PI, Chung LC et al (2011) J Mater Sci 46:4826. doi:10.1007/s10853-011-5394-y

    CAS  Google Scholar 

  15. Zhang YP, Pan CX (2011) J Mater Sci 46:2622. doi:10.1007/s10853-010-5116-x

    CAS  Google Scholar 

  16. Liu YB, Gan XJ, Zhou BX et al (2009) J Hazard Mater 171:678

    CAS  Google Scholar 

  17. Patzke GR, Krumeich F, Nesper R (2002) Angew Chem Int Ed 41:2446

    CAS  Google Scholar 

  18. Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev 108:845

    CAS  Google Scholar 

  19. Wang ZR, Wang H, Liu B, Qiu WZ et al (2011) ACS Nano 5(10):8412

    CAS  Google Scholar 

  20. Zhu HM, Yan JH, Jiang XG et al (2008) J Hazard Mater 153:670

    CAS  Google Scholar 

  21. Zhao DX, Li QL, Ye Y, Zhang CR (2010) Synth Met 160:866

    CAS  Google Scholar 

  22. Yan JH, Zhu HM, Jiang XG, Chi Y, Cen KF (2009) J Hazard Mater 162:646

    CAS  Google Scholar 

  23. Yu CL, Yu JC, Chan M (2009) J Solid State Chem 182:1061

    CAS  Google Scholar 

  24. Boissiere C, Van der Lee A, El Mansouri A et al. (1999) Chem Commun 2047–2048

  25. Yu JG, Shi L (2010) J Mol Catal A 326:8

    CAS  Google Scholar 

  26. Zhu ZF, He ZL, Li JQ, Liu DG, Wei N (2010) Mater Res Innov 14:426

    CAS  Google Scholar 

  27. Zhu ZF, Zhou JQ, He ZL (2011) Mater Res Innov 15:78

    CAS  Google Scholar 

  28. Zhu ZF, He ZL, Li JQ, Zhou JQ, Wei N, Liu DG (2011) J Mater Sci 46:931. doi:10.1007/s10853-010-4837-1

    Google Scholar 

  29. Shen FY, Que WX, Liao YL, Yin XT (2011) Ind Eng Chem Res 50:9131

    CAS  Google Scholar 

  30. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269

    CAS  Google Scholar 

  31. Irie H, Watanabe Y, Hashimoto K (2003) J Phys Chem B 107:5483

    CAS  Google Scholar 

  32. Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33

    CAS  Google Scholar 

  33. Yu JG, Wang GH, Cheng B, Zhou MH (2007) Appl Catal B 69:171

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Major Program of the National Natural Science Foundation of China (no. 90923012) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuoli He or Wenxiu Que.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Z., Que, W., He, Y. et al. Nanosphere assembled mesoporous titanium dioxide with advanced photocatalystic activity using absorbent cotton as template. J Mater Sci 47, 7210–7216 (2012). https://doi.org/10.1007/s10853-012-6667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6667-9

Keywords

Navigation