Skip to main content
Log in

Hierarchically Structured Porous SnO2/TiO2 Materials with Design Controllable Phases and Enhanced Photocatalytic Activity

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

To increase the photogenerated carrier separation and reduce the electron-hole recombination process for photocatalysts performance. In this article, hierarchically macroporous structured TiO2/SnO2 materials with controllable composition and phases have been successfully synthesized by using a typical process. This method involves several sequential preparation steps: (1) preparation of core-shell structure SnO2/PS submicrospheres by hydrothermal method; (2) preparation of TiO2/SnO2/PS submicrospheres by assembling amorphous TiO2 on surface of SnO2/PS submicrospheres; (3) direct calcination of TiO2/SnO2/PS submicrospheres to eventually produce hierarchically structured TiO2/SnO2 materials with pores-in-pores. With rutile phases TiO2, TiO2/SnO2 macroporous materials show significantly enhanced catalytic activity when used as photocatalysts for the degradation of Rhodamine B under UV irradiation. The photodegradation ratio of Rhodamine B was 96% for 25 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, J., Zou, Y., Zou, X., Ba,i T., Liu, Y., Gao, R., Wang, D., and Li, G-D., Nanoscale, 2014, vol. 6, pp. 7255–7262.

    Article  CAS  Google Scholar 

  2. Chen, J.S., Chen, C., Liu, J., Xu, R., Qiao, S. Z., and Lou, X.W., Chem. Commun., 2011, vol. 47, pp. 2631–2633.

    Article  CAS  Google Scholar 

  3. Yue, D.T., Qian, X.F., and Zhao, Y.X., Science Bulletin, 2015, vol. 60. no. 21, pp. 1791–1806.

    Article  CAS  Google Scholar 

  4. Ding, S., Zhu, T., Chen, J. S., Wang, Z., Yuan, C., and Lou, X.W., J. Mater. Chem., 2011, vol. 21, pp. 6602–6606.

    Article  CAS  Google Scholar 

  5. Sung, H.A., Dong, J.K., Won, S.C., and Jong, H.K., Adv. Mater., 2013, vol. 25, pp. 4893–4897.

    Article  Google Scholar 

  6. Umang, V.D., Xu, C., Wu, J., and Gao, D., J. Phys. Chem. C, 2013, vol. 117, pp. 3232–3239.

    Google Scholar 

  7. Karuturi, S.K., Luo, J., Cheng, C., Liu, L., Su, L.T., Tok, A.I.Y., and Fan, H.J., Adv. Mater., 2012,vol. 24, pp. 4157–4162.

    Article  CAS  Google Scholar 

  8. Pang, A., Sun, X., Ruan, H., Li, Y., Dai, S., and Wei, M., Nano Energy, 2014, vol. 5, pp. 82–90.

    Article  CAS  Google Scholar 

  9. Wu, W., Xu, Y., Rao, H.S., Feng, H., Su, C., and Kuang, D., Angew. Chem., 2014, vol. 126, pp. 4916–4921.

    Article  Google Scholar 

  10. Liu, B., Liu, L., Lang, X., Wang, H., Lou, X.W., and Eray, S.-A., Energy Environ. Sci., 2014, vol. 7, pp. 2592–2597.

    Article  CAS  Google Scholar 

  11. Lee, S., Lee, J., Hwang, S.-H., Yun, J., and Jang, J., ACS Nano, 2015, vol. 9, no. 5, pp. 4939–4949.

    Article  CAS  Google Scholar 

  12. Chen, H.Y., Kuang, D.B., and Su, C.Y., J. Mater. Chem. 2012, vol. 22, pp. 15475–15489.

    Article  CAS  Google Scholar 

  13. Zhang, Q.F. and Cao, G.Z., Nano Today, 2011, vol. 6, pp. 91–109.

    Article  CAS  Google Scholar 

  14. O’Regan, B. and Gratzel, M., Nature, 1991, vol. 353, pp. 737–740.

    Article  Google Scholar 

  15. Wang, Y.F., Li, K.N., Xu, Y.F., Rao, H.S., Su, C.Y., and Kuang, D.B., Nanoscale, 2013, vol. 5, pp. 5940–5948.

    Article  CAS  Google Scholar 

  16. Qian, J., Liu, P., Xiao, Y., Jiang, Y., Cao, Y., Ai, X., and Yang, H., Adv. Mater., 2009, vol. 21, pp. 3663–3667.

    Article  CAS  Google Scholar 

  17. Lu, Z., Ye, M., Li, N., Zhong, W., and Yin, Y., Angew. Chem., Int. Ed., 2010, vol. 49, pp. 1862–1866.

    Article  CAS  Google Scholar 

  18. Lu, Z., Duan, J., He, L., Hu, Y., and Yin, Y., Anal. Chem., 2010, vol. 82, pp. 7249–7258.

    Article  CAS  Google Scholar 

  19. Nozik, A.J., Nature, 1975, vol. 257, pp. 383–386.

    Article  CAS  Google Scholar 

  20. Satyanarayana, R-G., Krishnamoorthy, A., Christopher, Y., Michael, G., and Palani, B., Energy Environ. Sci., 2010, vol. 3, pp. 838–845.

    Article  Google Scholar 

  21. Kuppan, S., Krishnamoorthy, A., and Palani, B., Energy Environ. Sci., 2010, vol.3, pp. 939–948.

    Article  Google Scholar 

  22. Kim, G., Jo, C., Kim, W., Chun, J., Yoon, S., Lee, J., and Choi, W., Energy Env. Sci., 2013, vol. 6, pp. 2932–2938.

    Article  CAS  Google Scholar 

  23. Zhang, G., Wu, H-B., Song, T., Paik, U., and Lou, X., Angew. Chem., Int. Ed. 2014, vol. 53, no. 46, pp. 12590–12593.

    CAS  Google Scholar 

  24. Tripathy, J., Lee, K., and Schmuki, P., Angew. Chem., Int. Ed., 2014, vol. 53, no. 46, pp. 12605–12608.

    CAS  Google Scholar 

  25. Maximilian, M., Izabela, C., Núria, L., and Javier, P., Angew. Chem., Int. Ed., 2014, vol. 53, no. 33, pp. 8628–8633.

    Article  Google Scholar 

  26. Fujishima, A. and Honda, K., Nature, 1972, vol. 238, pp. 37–38.

    Article  CAS  Google Scholar 

  27. Zuo, F., Wang, L., Wu, T., Zhang, Z., Borchardt, D., and Feng, P., J. Am. Chem. Soc., 2010, vol. 132, pp. 11856–11857.

    Article  CAS  Google Scholar 

  28. Zhou, W., Li, W., Wang, J., Qu, Y., Yang, Y., Xie, Y., Zhang, K., Wang, L., Fu, H., and Zhao, D., J. Am. Chem. Soc., 2014, vol. 136, no. 26, pp. 9280–9283.

    Article  CAS  Google Scholar 

  29. Joo, J.B., Zhang, Q., Dahl, M., Lee, I., Goebl, J., Zaera, F., and Yin, Y., Energy Environ. Sci., 2012, vol. 5, pp. 6321–6327.

    Article  CAS  Google Scholar 

  30. Liu, H., Joo, J.B., Dahl, M., Fu, L., Zeng, Z., and Yin, Y., Energy Environ. Sci., 2015, vol. 8, pp. 286–296.

    Article  CAS  Google Scholar 

  31. Tiwana, P., Docampo, P., Johnston, M.B., Snaith, H.J., and Herz, L.M., ACS Nano, 2011, vol. 5, pp. 5158–5166.

    Article  CAS  Google Scholar 

  32. Zhao, Q.C., Appl. Sur. Sci., 2015, vol. 344, pp. 107–111.

    Article  CAS  Google Scholar 

  33. Shen, Q., Katayama, K., Sawada, T., Yamaguchi, M., Kumagai, Y., and Toyoda, T., Chem. Phys. Lett., 2006, vol. 419, pp. 464–468.

    Article  CAS  Google Scholar 

  34. Jenny, S., Masaya, M., Masato, T., Zhang, J., Yu, H., Masakazu, A., and Detlef, W.B., Chem. Rev., 2014, vol. 114, pp. 9919–9986.

    Article  Google Scholar 

  35. Amy, L. L., Lu, G., and John, T.Y., Chem. Rev., 1995, vol. 95, pp. 735–758.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingchun Zhao.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Shao, H. & Zhao, Q. Hierarchically Structured Porous SnO2/TiO2 Materials with Design Controllable Phases and Enhanced Photocatalytic Activity. Russ J Appl Chem 91, 150–158 (2018). https://doi.org/10.1134/S1070427218010238

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218010238

Navigation