Skip to main content
Log in

Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Processing by severe plastic deformation (SPD) typically increases the strength of metals and alloys drastically by decreasing their grain size into the submicrometer or nanometer range but the ductility of such materials remains typically low. This report describes the first demonstration that it is possible to increase the room temperature ductility of aluminum-based alloys processed by SPD and to attain elongations to failure of >150% while retaining the enhanced strength. This unique combination of properties is due to the occurrence of grain boundary sliding at room temperature. The sliding was obviously achieved by introducing a grain boundary wetting of the aluminum/aluminum grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  2. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33

    Article  Google Scholar 

  3. Zhu YT, Liao X (2004) Nat Mater 3:351

    Article  CAS  ADS  PubMed  Google Scholar 

  4. Koch CC, Morris DG, Lu K, Inoue A (1999) MRS Bull 24:54

    CAS  Google Scholar 

  5. Wang Y, Chen M, Zhou F, Ma E (2002) Nature 419:912

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Zhao YH, Bingert JF, Liao XZ, Cui BZ, Han K, Sergueeva A, Mukherjee AK, Valiev RZ, Langdon TG, Zhu YT (2006) Adv Mater 18:2949

    Article  CAS  Google Scholar 

  7. Zhao YH, Zhu YT, Liao XZ, Horita Z, Langdon TG (2006) Appl Phys Lett 89:121906

    Article  ADS  Google Scholar 

  8. Zhao YH, Liao XZ, Cheng S, Ma E, Zhu YT (2006) Adv Mater 18:2280

    Article  CAS  Google Scholar 

  9. Horita Z, Ohashi K, Fujita T, Kaneko K, Langdon TG (2005) Adv Mater 17:1599

    Article  CAS  Google Scholar 

  10. Tao KX, Choo H, Li HQ, Clausen B, Jin JE, Lee YK (2007) Appl Phys Lett 90:101911

    Article  ADS  Google Scholar 

  11. Valiev R, Gunderov D, Prokofiev E, Pushin V, Zhu Y (2008) Mater Trans 49(1):97

    Article  CAS  Google Scholar 

  12. Valiev R (2004) Nat Mater 3:511

    Article  CAS  ADS  PubMed  Google Scholar 

  13. Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Scripta Mater 37:1945

    Article  CAS  Google Scholar 

  14. Langdon TG (2009) J Mater Sci 44:5998. doi:10.1007/s10853-009-3780-5

    Article  CAS  ADS  Google Scholar 

  15. Murashkin MYu, Kilmametov AR, Valiev RZ (2008) Phys Met Metallogr 106(1):90

    Article  ADS  Google Scholar 

  16. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  17. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  18. Chinh NQ, Gubicza J, Kovács Zs, Lendvai J (2004) J Mater Res 19:31

    CAS  ADS  Google Scholar 

  19. Straumal BB, Baretzky B, Mazilkin AA, Phillipp F, Kogtenkova OA, Volkov MN, Valiev RZ (2004) Acta Mater 52:4469

    Article  CAS  Google Scholar 

  20. Mazilkin AA, Straumal BB, Rabkin E, Baretzky B, Enders S, Protasova SG, Kogtenkova OA, Valiev RZ (2006) Acta Mater 54:3933

    Article  CAS  Google Scholar 

  21. Chinh NQ, Vörös Gy, Szommer P, Horita Z, Langdon TG (2006) Mater Sci Forum 503–504:1001

    Article  Google Scholar 

  22. Meyer MA, Mishra A, Benson DJ (2006) JOM 58(4):41

    Article  Google Scholar 

  23. Zhang K, Weertman JR, Eastman JA (2005) Appl Phys Lett 87:061921

    Article  ADS  Google Scholar 

  24. Zhang K, Weertman JR, Eastman JA (2004) Appl Phys Lett 85:5197

    Article  CAS  ADS  Google Scholar 

  25. Man J, Obrtlík K, Polák J (2003) Mater Sci Eng A 351:123

    Article  Google Scholar 

  26. Man J, Petrenec M, Obrtlík K, Polák J (2004) Acta Mater 52:5551

    Article  CAS  Google Scholar 

  27. Choi Y, Lee HS, Kwon D (2004) J Mater Res 19:3307

    Article  CAS  ADS  Google Scholar 

  28. Langdon TG (1994) Mater Sci Eng A174:225

    CAS  Google Scholar 

  29. Straumal BB, Kogtenkova O, Zięba P (2008) Acta Mater 56:925

    Article  CAS  Google Scholar 

  30. Straumal BB (2003) Grain boundary phase transitions. Nauka publishers, Moscow

    Google Scholar 

  31. Straumal BB, Mazilkin AA, Kogtenkova OA, Protasova SG, Baretzky B (2007) Philos Mag Lett 87:423

    Article  CAS  ADS  Google Scholar 

  32. Straumal BB, Gornakova AS, Kogtenkova OA, Protasova SG, Sursaeva VG, Baretzky B (2008) Phys Rev B 78:054202

    Article  ADS  Google Scholar 

  33. Massalski TB (ed) (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park, OH, p 238

    Google Scholar 

  34. Straumal B, Valiev R, Kogtenkova O, Zieba P, Czeppe T, Bielanska E, Faryna M (2008) Acta Mater 56:6123

    Article  CAS  Google Scholar 

  35. Gao YJ, Han YJ (2003) Mater Sci Forum 475–479:3131

    Google Scholar 

  36. Straumal BB, Kogtenkova OA, Protasova SG, Nekrasov AN, Baretzky B (2010) JETP Lett 92, in press

  37. Kilmametov AR, Vaughan G, Yavari AR, LeMoulec A, Botta WJ, Valiev RZ (2009) Mater Sci Eng A 503:10

    Article  Google Scholar 

  38. Valiev RZ, Kozlov EV, Ivanov YuF, Lian J, Nazarov AA, Baudelet B (1994) Acta Metall Mater 42:2467

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Peter Szommer for assistance with the AFM measurements. This work was supported by the Russian Foundation for Basic Research under Grants No. 08-08-97044 and 09-08-92656 and Federal Agency for Science and Innovations (RZV, MYuM, ARK), the Russian Foundation for Basic Research under Grants No. 09-03-92481, 09-03-00784 and 08-08-91302) (BBS), the Hungarian Scientific Research Fund, OTKA, under Grant No. K67692 and K81360 (NQC) and the National Science Foundation of the United States under Grant No. DMR-0855009 (TGL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan Z. Valiev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valiev, R.Z., Murashkin, M.Y., Kilmametov, A. et al. Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy. J Mater Sci 45, 4718–4724 (2010). https://doi.org/10.1007/s10853-010-4588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4588-z

Keywords

Navigation