Skip to main content
Log in

Effect of Al addition on the microstructure and low-temperature reactivity to oxygen of pre-formed MoSi2

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of aluminum addition on the structural and low-temperature oxidation behavior of commercially available MoSi2 was investigated by means of X-ray diffraction and thermogravimetric analysis. MoSi2 + x Al compounds (with x = 0.0, 0.10, 0.20, 0.30, and 0.40) were mechanically processed for 6 h starting from α-MoSi2 and Al powders. It is shown that Al can substitute Si atoms in pre-formed MoSi2 leading to the formation of β-MoSi2 (the high temperature phase). The unit cell volume of β-MoSi2 increases linearly with the Al content. For x < 0.20, a clear onset temperature for the oxidation of MoSi2 is discernable at ca. 420 °C, while it is barely noticeable for x ≥ 0.20. The normalized mass gain decreases from ~12 % m−2 to less than 2 % m−2 when the Al content varies from 0.0 to 0.2. For x ≥ 0.20, the normalized mass gain stays constant at less than 2 % m−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shah DM, Berczik D, Anton DL, Hecht R (1992) Mater Sci Eng A 155:45

    Article  Google Scholar 

  2. Koch CC (1998) Mater Sci Eng A 244:39

    Article  Google Scholar 

  3. Murarka SP (1995) Intermetallics 3:173

    Article  CAS  Google Scholar 

  4. Petrovic JJ (2000) Intermetallics 8:1175

    Article  CAS  Google Scholar 

  5. Mitra R, Eswara Prasad N, Kumari S, Venugopal Rao A (2003) Metall Mater Trans A 34:1069

    Article  Google Scholar 

  6. Sadananda K, Feng CR, Jones H, Petrovic J (1992) Mater Sci Eng A 155:227

    Article  Google Scholar 

  7. Chou TC, Nieh TG (1993) J Mater Res 8:1605

    Article  CAS  Google Scholar 

  8. Yao Z, Stiglich J, Sudarshan TS (1999) J Mater Eng Perform 8:291

    Article  CAS  Google Scholar 

  9. Liu YQ, Shao G, Tsakiropoulos P (2001) Intermetallics 9:125

    Article  CAS  Google Scholar 

  10. Yanagihara K, Przybylski K, Maruyama T (1997) Oxid Met 47:277

    Article  CAS  Google Scholar 

  11. Strom E, Cao Y, Yao YM (2007) Trans Nonferrous Met Soc China 17:1282

    Article  Google Scholar 

  12. Yanagihara K, Maruyama T, Nagata K (1995) Intermetallics 3:243

    Article  CAS  Google Scholar 

  13. Dasgupta T, Umarji AM (2008) Intermetallics 16:739

    Article  CAS  Google Scholar 

  14. Ingemarsson L, Halvarsson M, Engkvist J, Jonsson T, Hellstron K, Johansson LG, Svensson JE (2010) Intermetallics 18:633

    Article  CAS  Google Scholar 

  15. Mitra R, Khanna R, Rama Rao VV (2004) Mater Sci Eng A 382:150

    Article  Google Scholar 

  16. Yanagihara K, Maruyama T, Nagata K (1996) Intermetallics 4:S133

    Article  CAS  Google Scholar 

  17. Dasgupta T, Umarji AM (2007) Intermetallics 15:128

    Article  CAS  Google Scholar 

  18. Tabaru T, Shobu K, Hirai H, Hanada S (2003) Intermetallics 11:721

    Article  CAS  Google Scholar 

  19. Stergiou A, Tsakiropoulos P, Brown A (1997) Intermetallics 5:69

    Article  CAS  Google Scholar 

  20. Maruyuma T, Yanagihara K (1997) Mater Sci Eng A 239:828

    Article  Google Scholar 

  21. Ramberg CE, Worrell WL (2002) J Am Ceram Soc 85:444

    Article  CAS  Google Scholar 

  22. Costa e Silva A, Kaufman MJ (1993) Scri Metall Mater 29:1141

    Article  CAS  Google Scholar 

  23. Chandrasekharaiah MS, Margrave JL, O`Hare PAG (1993) J Phys Chem Ref Data 22:1459

    Article  CAS  Google Scholar 

  24. Liu Y, Shao G, Tsakiropoulos P (2000) Intermetallics 8:953

    Article  CAS  Google Scholar 

  25. Dasgupta T, Bhattacharya AK, Umarji AM (2003) Solid State Commun 126:573

    Article  CAS  Google Scholar 

  26. Gahyoumabadi ME, Saidi A, Abbasi MH (2009) J Alloys Compd 472:84

    Article  Google Scholar 

  27. Lee PY, Chen TR, Yang JL, Chin TS (1995) Mater Sci Eng A 192–193:556

    Google Scholar 

  28. Liu L, Padella F, Guo W, Magini M (1995) Acta Metall Mater 43:3755

    Article  CAS  Google Scholar 

  29. Zhang DL (1995) J Mater Sci Lett 14:1508

    Article  CAS  Google Scholar 

  30. Yen BK, Aizawa T, Kihara J (1996) Mater Sci Eng A 220:8

    Article  Google Scholar 

  31. Kang P, Yin Z (2003) Mater Lett 75:4412

    Article  Google Scholar 

  32. Zhang H, Long C, Chen P, Tang G, Liu X (2003) Int J Refrat Met Hard Mater 21:75

    Article  CAS  Google Scholar 

  33. Toghian Chaharsoughi A, Borhani Gh, Tahmasebi R (2011) J Alloys Compd 509:2617

    Article  Google Scholar 

  34. Bokhonov BB, Konstanchuk IG, Boldyrev VV (1995) J Alloys Compd 218:190

    Article  CAS  Google Scholar 

  35. Kang PC, Yin Z, Celestine O (2005) Mater Sci Eng A 395:167

    Article  Google Scholar 

  36. Kang P, Yin Z (2004) Nanotechnology 15:851

    Article  CAS  Google Scholar 

  37. Williamson GK, Hall WH (1953) Acta Metall 1:22

    Article  CAS  Google Scholar 

  38. Kang P, Yin Z (2003) Mater Lett 57:4412

    Article  CAS  Google Scholar 

  39. Yen BK, Aizawa T, Kihara J (1996) J Am Ceram Soc 79:2221

    Article  CAS  Google Scholar 

  40. Herron AJ, Schaffer GB (2003) Mater Sci Eng A 352:105

    Article  Google Scholar 

  41. Tabaru T, Shobu K, Sakamoto M, Hanada S (2004) Intermetallics 12:33

    Article  CAS  Google Scholar 

  42. Zhang S, Munir ZA (1991) J Mater Sci 26:3685. doi:10.1007/BF00557164

    Article  CAS  Google Scholar 

  43. Deevi SC (1991) J Mater Sci 26:3343. doi:10.1007/BF01124683

    Article  CAS  Google Scholar 

  44. Yanagihara K, Maruyama T, Nagata K (1993) Mater Trans JIM 34:1200

    CAS  Google Scholar 

  45. Maruyama T, Bi XF, Nagata K (1992) In: Saito Y, Onay B, Maruyama T (eds) High temperature corrosion of advanced materials and protective coatings. Elsevier Science Publishers B, pp 291–299

  46. Knittel S, Mathieu S, Vilasi M (2010) Intermetallics 18:2267

    Article  CAS  Google Scholar 

  47. Knittel S, Mathieu S, Vilasi M (2011) Intermetallics 19:1207

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Science and Engineering Research Council (NSERC) of Canada (Strategic Grant) and the Canada Research Chair program for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Guay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meddar, L., Magnien, B., Clisson, M. et al. Effect of Al addition on the microstructure and low-temperature reactivity to oxygen of pre-formed MoSi2 . J Mater Sci 47, 6792–6800 (2012). https://doi.org/10.1007/s10853-012-6623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6623-8

Keywords

Navigation