Skip to main content
Log in

Preparation of amorphous TiS x thin film electrodes by the PLD method and their application to all-solid-state lithium secondary batteries

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Titanium sulfide thin film electrodes were prepared by the pulsed laser deposition method using a KrF excimer laser. Thin films of various compositions were prepared under several deposition conditions such as Ar gas pressure, laser fluence, and target-substrate distance. The thickness of the titanium sulfide thin film prepared under Ar gas pressure of 0.01 Pa, the pulse energy of 200 mJ/pulse, and the distance of 5 cm between the target and the substrate was ca. 400 nm. The films prepared at room temperature showed no peaks in the XRD pattern and no periodic lattice fringe in high-resolution transmission electron microscopic images, suggesting that they were amorphous. An all-solid-state cell using a TiS4.0 thin film electrode formed on a pelletized Li2S–P2S5 glass–ceramic electrolyte showed the reversible capacity of 543 mAh g−1, which was higher than that of a cell using a TiS1.7 film. The former solid-state cell retained higher capacity for 20 cycles at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) Nat Mater 10:682

    Article  CAS  Google Scholar 

  2. Minami K, Hayashi A, Tatsumisago M (2011) J Am Ceram Soc 94:1779

    Article  CAS  Google Scholar 

  3. Komiya R, Hayashi A, Morimoto H, Tatsumisago M, Minami T (2001) Solid State Ionics 140:83

    Article  CAS  Google Scholar 

  4. Mizuno F, Hama S, Hayashi A, Tadanaga K, Minami T, Tatsumisago M (2002) Chem Lett 1244

  5. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) J Power Sources 146:711

    Article  CAS  Google Scholar 

  6. Tatsumisago M, Hayashi A (2008) Funct Mater Lett 1:31

    Article  CAS  Google Scholar 

  7. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783

    Article  CAS  Google Scholar 

  8. Ohzuku T, Ueda A (1994) J Electrochem Soc 141:2972

    Article  CAS  Google Scholar 

  9. Ohta N, Takada K, Zhang L, Ma R, Osada M, Sakai T (2006) Adv Mater 18:2226

    Article  CAS  Google Scholar 

  10. Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M (2010) J Electrochem Soc 157:A407

    Article  CAS  Google Scholar 

  11. Mizuno F, Hayashi A, Tadanaga K, Minami T, Tatsumisago M (2003) J Power Sources 124:170

    Article  CAS  Google Scholar 

  12. Holleck GL, Driscoll JR (1977) Electrochim Acta 22:647

    Article  CAS  Google Scholar 

  13. Whittingham MS, Panella JA (1981) Mater Res Bull 16:37

    Article  CAS  Google Scholar 

  14. Iwamoto K, Aotani N, Takada K, Kondo S (1994) Solid State Ionics 70–71:658

    Article  Google Scholar 

  15. Trevey JE, Stoldt CR, Lee SH (2011) J Electrochem Soc 158:A1282

    Article  CAS  Google Scholar 

  16. Kanehori K, Matsumoto K, Miyauchi K, Kudo T (1983) Solid State Ionics 9–10:1445

    Article  Google Scholar 

  17. Jones SD, Akridge JR (1992) Solid State Ionics 53–56:628

    Article  Google Scholar 

  18. McGrawa JM, Bahna CS, Parilla PA, Perkinsa JD, Readeyb DW, Ginleya DS (1999) Electrochim Acta 45:187

    Article  Google Scholar 

  19. Julien C, Haro-Poniatowski E, Camacho-Lopez MA, Escobar-Alarcon L, Jimenez-Jarquin J (2000) Mater Sci Eng B 72:36

    Article  Google Scholar 

  20. Sauvage F, Baudrin E, Morcrette M, Tarascon JM (2004) Electrochem Solid State Lett 7:A15

    Article  CAS  Google Scholar 

  21. Hayashi A, Hama S, Minami T, Tatsumisago M (2003) Electrochem Commun 5:111

    Article  CAS  Google Scholar 

  22. Sakuda A, Hayashi A, Hama S, Tatsumisago M (2010) J Am Ceram Soc 93:765

    Article  CAS  Google Scholar 

  23. Takada K, Aotani N, Iwamoto K, Kondo S (1996) Solid State Ionics 86:877

    Article  Google Scholar 

  24. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) J Electrochem Soc 150:A796

    Article  CAS  Google Scholar 

  25. Ji X, Nazar LF (2010) J Mater Chem 20:9821

    Article  CAS  Google Scholar 

  26. Sakuda A, Kitaura H, Hayashi A, Tatsumisago M, Hosoda Y, Nagakane T, Sakamoto A (2012) Chem Lett 41:260

    Article  CAS  Google Scholar 

  27. Reshak AH, Kityk IV, Auluck S (2008) J Chem Phys 129:074706

    Article  CAS  Google Scholar 

  28. Reshak AH (2009) J Phys Chem A 113:1635

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Tatsumisago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuyama, T., Sakuda, A., Hayashi, A. et al. Preparation of amorphous TiS x thin film electrodes by the PLD method and their application to all-solid-state lithium secondary batteries. J Mater Sci 47, 6601–6606 (2012). https://doi.org/10.1007/s10853-012-6594-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6594-9

Keywords

Navigation