Skip to main content

Advertisement

Log in

Effect of ex situ hydrogenation on the structure and electrochemical properties of amorphous silicon thin film

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel-metal hydride (Ni-MH) batteries were widely used due to their various advantages, but its further application and development have been seriously hindered by the low electrochemical discharge capacity of conventional hydrogen storage alloy electrode. The hydrogenated amorphous silicon (a-Si:H) thin film electrode for Ni-MH battery has been proven to have a dramatic electrochemical capacity. We prepared a-Si:H thin films by a two-step process of rf-sputtering followed by hydrogenation, and investigated the effect of hydrogenation on the structure and electrochemical properties of which as an anode. The maximum discharge capacity of a-Si:H thin film electrode after hydrogenation increases from initial 180 mAh·g−1to 1827 mAh·g−1, which is over tenfold that of as-deposited hydrogen-less a-Si thin film electrode. Then, the preliminary relationships between hydrogen content and electrochemical performance of a-Si:H thin film electrode were analyzed, and several negative factors of electrochemical performance for a-Si:H thin film electrode were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Davis SJ, Caldeira K, Matthews HD (2010) Future CO2 emissions and climate change from existing energy infrastructure. Science 329:1330–1333

    Article  CAS  Google Scholar 

  2. Chalk SG, Miller JF (2006) Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. J Power Sources 159:73–80

    Article  CAS  Google Scholar 

  3. Rusman NAA, Dahari M (2016) A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int J Hydrogen Energy 41:12108–12126

    Article  CAS  Google Scholar 

  4. Tliha M, Mathlouthi H, Lamloumi J, Percheron-Guégan A (2011) Electrochemical study of intermetallic metal hydride as an anode material of Ni-MH batteries. J Solid state Electrochem 15:1963–1970

    Article  CAS  Google Scholar 

  5. George L, Saxena SK (2010) Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali- earth elements: a review. Int J Hydrogen Energy 35:5454–5470

    Article  CAS  Google Scholar 

  6. Zhang W, Han S, Hao J, Li Y, Bai T, Zhang J (2009) Study on kinetics and electrochemical properties of low-Co AB5-type alloys for high-power Ni/MH battery. Electrochim Acta 54:1383–1387

    Article  CAS  Google Scholar 

  7. Ruiz FC, Castro EB, Peretti HA, Visintin A (2010) Study of the different ZrxNiy phases of Zr-based AB2 materials. Int J Hydrogen Energy 35:9879–9887

    Article  CAS  Google Scholar 

  8. Chi Y, Weng WX, Wang ZM, Li C (2008) Self-discharge behavior of LanNi5-based hydrogen storage electrodes in different electrolytes. J Solid state Electrochem 12:935–940

    Article  Google Scholar 

  9. Stuckelberger M, Biron R, Wyrsch N, Haug F-J, Ballif C (2017) Review: Progress in solar cells from hydrogenated amorphous silicon. Renew Sustain Energy Rev 76:1497–1523

    Article  CAS  Google Scholar 

  10. Yamaguchi K, Domi Y, Usui H, Shimizu M, Matsumoto K, Nokami T, Itoh T, Sakaguchi H (2017) Influence of the structure of the anion in an ionic liquid electrolyte on the electrochemical performance of a silicon negative electrode for a lithium-ion battery. J Power Sources 338:103–107

    Article  CAS  Google Scholar 

  11. Trill JH, Tao C, Winter M, Passerini S, Echert H (2011) NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries. J Solid state Electrochem 15:349–356

    Article  CAS  Google Scholar 

  12. Kale P, Gangal AC, Edla R, Sharma P (2012) Investigation of hydrogen storage behavior of silicon nanoparticles. Int J Hydrogen Energy 37:3741–3747

    Article  CAS  Google Scholar 

  13. Lan JH, Cheng DJ, Cao DP, Wang WC (2008) Silicon nanotube as a promising candidate for hydrogen storage: from the first principle calculations to grand canonical Monte Carlo simulations. J Phys Chem C 112:5598–5604

    Article  CAS  Google Scholar 

  14. Zhang D, Ma C, Liu C (2007) Potential high-capacity hydrogen storage medium: hydrogenated silicon fullerenes. The Journal of Physical Chemistry C 111:17099–17103

    Article  CAS  Google Scholar 

  15. Song B, Zhang C, He P (2015) Si20H20 cluster modified by small organic molecules and lithium atoms for high-capacity hydrogen storage. Int J Hydrogen Energy 40:8093–8105

    Article  CAS  Google Scholar 

  16. Merazga S, Cheriet A, M’hammedi K, Mefoued A, Gabouze N (2019) Investigation of porous silicon thin films for electrochemical hydrogen storage. Int J Hydrogen Energy 44:9994–10002

    Article  CAS  Google Scholar 

  17. Honarpazhouh Y, Astaraei FR, Naderi HR, Tavakoli O (2016) Electrochemical hydrogen storage in Pd-coated porous silicon/graphene oxide. Int J Hydrogen Energy 41:12175–12182

    Article  CAS  Google Scholar 

  18. Meng T, Young K, Beglau D, Yan S, Zeng P, Cheng MM-C (2016) Hydrogenated amorphous silicon thin film anode for proton conducting batteries. J Power Sources 302:31–38

    Article  CAS  Google Scholar 

  19. Grundner M, Jacob H (1986) Investigations on hydrophilic and hydrophobic silicon (100) wafer surfaces by X-ray photoelectron and high-resolution electron energy loss-spectroscopy. Appl Phys A 39:73–82

    Article  Google Scholar 

  20. Lucovsky G, Nemanich RJ, Knights JC (1979) Structural interpretation of the vibrational spectra of a-Si: H alloys. Phys Rev B 19:2064–2073

    Article  CAS  Google Scholar 

  21. Maley N (1992) Critical investigation of the infrared-transmission-data analysis of hydrogenated amorphous silicon alloys. Phys Rev B Condens Matter 46:2078–2085

    Article  CAS  Google Scholar 

  22. Pankove JI, Carlson DE, Berkeyheiser JE, Wance RO (1983) Neutralization of shallow acceptor levels in silicon by atomic hydrogen. Phys Rev Lett 51:2224–2225

    Article  CAS  Google Scholar 

  23. El-Sayed AM, Watkins MB, Grasser T, Afanas'ev VV, Shluger AL (2015) Hydrogen-induced rupture of strained Si-O bonds in amorphous silicon dioxide. Phys Rev Lett 114:115503

  24. Sheikholeslam SA, Manzano H, Gresu C, Ivanov A (2016) Reduced hydrogen diffusion in strained amorphous SiO2: undestanding ageing in MOSFET devices. Journal of Materials Chemistry C 4:8104–8110

    Article  CAS  Google Scholar 

  25. Bard AJ, Faulkner LR (2001) Electrochemical Methods: Fundamentals and Applications. John Wiley & Sons Inc, New York

    Google Scholar 

  26. Tsai JW, Huang CY, Tai YH, Cheng HC, Su FC, Luo FC, Tuan HC (1997) Reducing threchold voltage shifts in amorphous silicon thin film transistors by hydrogenating the gate niride prior to amorphous silicon deposition. Spplied Physics Letters 71:1237–1239

    CAS  Google Scholar 

  27. Mortensen K, Chen DM, Bedrossian PJ, Golovchenko JA, Besenbacher FB (1991) Two reaction channels directly observed for atomic hydrogen on the Si(111)-7×7 surface. Phys Rev B 43:1816–1819

    Article  CAS  Google Scholar 

  28. Teresi CS, Gerberich WW (2018) Silicon activation volumes for fracture as affected by hydrogen. Scripta Mater 144:56–59

    Article  CAS  Google Scholar 

  29. Yasuda T, Watanabe M (2013) Protic ionic liquids: fuel cell applications. MRS Bull 38:560–566

    Article  CAS  Google Scholar 

  30. Carlson DE, Magee CW (1978) A SIMS analysis of deuterium diffusion in hydrogenated amorphous silicon. Appl Phys Lett 33:81–83

    Article  CAS  Google Scholar 

  31. Jackson WB, Tsai CC (1992) Hydrogen transport in amorphous silicon. Phys Rev B Condens Matter 45:6564–6580

    Article  CAS  Google Scholar 

  32. Street RA, Tsai CC, Kakalios J, Jackson WB (1987) Hydrogen diffusion in amorphous silicon. Philosophical Magazine B 56:305–320

    Article  CAS  Google Scholar 

  33. Street RA (2011) Hydrogen Diffusion and Thermal Equilibrium of Electronic States in a-Si:H. MRS Online Proc Libr. https://doi.org/10.1557/proc-95-13

    Article  Google Scholar 

Download references

Funding

This work is financially supported by national natural science foundation of china (22065020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-min Zhang or Yong-chun Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Hm., Luo, Yc., Yang, St. et al. Effect of ex situ hydrogenation on the structure and electrochemical properties of amorphous silicon thin film. J Solid State Electrochem 25, 2539–2548 (2021). https://doi.org/10.1007/s10008-021-05038-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05038-1

Keywords

Navigation