Skip to main content
Log in

Polyamide 6 composites reinforced with glass fibers modified with electrostatically assembled multiwall carbon nanotubes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glass fiber-multiwall carbon nanotubes (GF-MWCNTs) hybrid preforms were prepared by electrostatic assembly method. Negatively charged MWCNTs by oxidization treatment were directly adsorbed onto the surfaces of positively charged GF to form tunable structure. The thickness and morphology of GF-MWCNTs preforms can be controlled by the assembly pH value and the concentration of oxidized-MWCNTs solution. We demonstrate that GF-MWCNTs preforms have uniform and porous interconnected network structure of MWCNTs on the surfaces of GF using FESEM. The multi-scale composites with the hybrid preforms were prepared by melt compounding. The presence of MWCNTs with porous nanostructure helps in the formation of interpenetrating network with polyamide 6 (PA 6) at the interface layer. As a result, the tensile tests of these multi-scale composites exhibit higher tensile properties in comparison with composites with GF, showing a promising structural composite to replace the traditional GF-reinforced composites with limited improvement of the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Norkhairunnisa M, Azhar AB, Shyang CW (2007) Polym Int 56:512

    Article  CAS  Google Scholar 

  2. Laura DM, Keskkula H, Barlow JW, Paul DR (2000) Polymer 41:7165

    Article  CAS  Google Scholar 

  3. Akkapeddi MK (2000) Polym Compos 21:576

    Article  CAS  Google Scholar 

  4. Mohd Ishak ZA, Leong YW, Steeg M, Karger-Kocsis J (2007) Compos Sci Technol 67:390

    Article  CAS  Google Scholar 

  5. Han KQ, Liu ZJ, Yu MH (2005) Macromol Mater Eng 290:688

    Article  CAS  Google Scholar 

  6. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  7. Wepasnick KA, Smith BA, Bitter JL, Howard D (2010) Anal Bioanal Chem 396:1003

    Article  CAS  Google Scholar 

  8. Gao J, Mikhail MI, Yu A, Bekyarova E, Zhao B, Haddon RC (2005) J Am Chem Soc 127:3847

    Article  CAS  Google Scholar 

  9. Peng HJ (2008) Am Chem Soc 130:42

    Article  CAS  Google Scholar 

  10. Simmons TJ, Bult J, Hashim DP, Linhardt RJ, Ajayan PM (2009) ACS Nano 3:865

    Article  CAS  Google Scholar 

  11. Meng H, Sui GX, Fang PF, Yang R (2008) Polymer 49:610

    Article  CAS  Google Scholar 

  12. Bekyarova E, Thostenson ET et al (2007) J Phys Chem C 111:17865

    Article  CAS  Google Scholar 

  13. Thostenson E, Chou TW (2006) Carbon 44:3022

    Article  CAS  Google Scholar 

  14. Thostenson ET (2002) J Appl Phys 91:6034

    Article  CAS  Google Scholar 

  15. Li WZ, Wang DZ, Yang SX, Wen JG, Ren ZF (2001) Chem Phys Lett 335:141

    Article  CAS  Google Scholar 

  16. Qu L, Zhao Y, Dai L (2006) Small 2:1052

    Article  CAS  Google Scholar 

  17. De Riccardis MF, Carbone D et al (2006) Carbon 44:671

    Article  Google Scholar 

  18. Qian H, Bismarck A, Greenhalgh ES, Kalinka G, Shaffer MSP (2008) Chem Mater 20:1862

    Article  CAS  Google Scholar 

  19. Zhang QH, Liu JW, Sager R, Dai L, Baur J (2009) Compos Sci Technol 69:594

    Article  CAS  Google Scholar 

  20. Bekyarova E, Thostenson ET et al (2007) Langmuir 23:3970

    Article  CAS  Google Scholar 

  21. Sureeptanapas P, Young RJ (2009) Compos Sci Technol 69:1547

    Article  Google Scholar 

  22. Sureeptanapas P, Hejda M, Eichhorn SJ, Young RJ (2010) Compos Sci Technol 70:88

    Article  Google Scholar 

  23. Gao L, Chou TW, Thostenson ET, Godara A, Zhang ZG, Mezzo L (2010) Carbon 48:2649

    Article  CAS  Google Scholar 

  24. Zhang J, Zhuang RC, Liu JW, Mader E, Heinrich G, Gao SL (2010) Carbon 48:2273

    Article  CAS  Google Scholar 

  25. Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Carbon 49:2581

    Article  CAS  Google Scholar 

  26. Hong TK, Lee DW, Choi HJ, Shin HS, Kim BS (2010) ACS Nano 4:3861

    Article  CAS  Google Scholar 

  27. Lee SB, Choi O, Lee et al (2011) Composites Part 42:337

    Article  Google Scholar 

  28. Schaefer JD, Rodriguez AJ, Guzman ME, Lim CS, Minaie B (2011) Carbon 49:2750

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20925621, 20906027, 21176068, 21136006, 21106038, and 51173043), the Special Projects for Key Laboratories in Shanghai (10DZ2211100), the Special Projects for Nanotechnology of Shanghai (1052nm02300, 11nm0500200), the Basic Research Program of Shanghai (10JC1403300, 10JC1403600, 11JC1403000), the Shanghai Shuguang Scholars Program (10SG31), Program for New Century Excellent Talents in University (NCET-11-0641), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Su, D., Jin, L. et al. Polyamide 6 composites reinforced with glass fibers modified with electrostatically assembled multiwall carbon nanotubes. J Mater Sci 47, 5446–5454 (2012). https://doi.org/10.1007/s10853-012-6434-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6434-y

Keywords

Navigation