Skip to main content
Log in

Fabrication of sandwich-structured ZnO/reduced graphite oxide composite and its photocatalytic properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

ZnO/RGO (ZnO/Reduced Graphite Oxide) composites with sandwich structure (layered structure) were synthesized at relatively low temperature (60 °C) using ZnSO4 and GO (Graphite Oxide) as precursors. Compared with pure ZnO, ZnO/RGO composites showed greatly enhanced-UV photocatalytic activity for the degradation of the organic dye methyl orange (MO). The structure and morphology of as-prepared samples have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Field Emission Scanning Electron Microscopy (FE-SEM), etc. ZnO/RGO composites had a sandwich structure, which would be enhanced when exfoliated GO was used. During the formation the composites, GO was reduced to RGO (graphite-like carbon named as Reduced Graphite Oxide, RGO). The groups which exist in GO (such as C=O, C–O–C) disappeared or obviously weakened, while the groups similar to those in graphite (such as C=C) appeared at the same time. Photoluminescence (PL) spectra of ZnO/RGO showed a significant decline compared to that of pure ZnO, which suggests that the recombination of excited electron–hole pair (e–h+) may be efficiently inhibited by the transfer of electrons to the carbon neighbor. The enhanced-photocatalytic activity for ZnO/RGO can be attributed to the migration effect of photoinduced electrons on the interface of RGO and ZnO. The photocorrosion effect of ZnO was found to be evidently suppressed according to Inductively Coupled Plasma Optical Emission Spectrometry (ICP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Petra N, Jirı Z, Josef K, Vıt K, Jirı R (2007) Appl Catal B 79:179

    Google Scholar 

  2. Idoko JO, Oluwapomile OO, Robert PF, Steve P, Alison W, Joseph W, Mike Winterbottom J (2007) Catal Today 128:100

    Article  Google Scholar 

  3. Euvananont C, Junin C, Inpor K, Limthongkul P, Thanachayanont C (2008) Ceram Int 34:1067

    Article  CAS  Google Scholar 

  4. Xiaodong Z, Haijia S, Yan Z, Tianwei T (2008) J Photochem Photobiol A 199:123

    Article  Google Scholar 

  5. Bircan D, Siddik I (2001) J Photochem Photobiol A 140:263

    Article  Google Scholar 

  6. Yeber MC, Roderiguez J, Freer J, Baeza J, Duran N, Mansilla HD (1999) Chemosphere 39:1679

    Article  CAS  Google Scholar 

  7. Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H (1995) J Photochem Photobiol A 85:247

    Article  CAS  Google Scholar 

  8. Amina AK, Tahar S, Jean-François P, Pierre B (2001) J Photochem Photobiol A 141:231

    Article  Google Scholar 

  9. Narayanasamy S, Manickavasakam M, Meenakshisundaram S (2008) Catal Commun 9:262

    Article  Google Scholar 

  10. Byrappa K, Dayananda AS, Sajan CP, Basavalingu B, Shayan MB, Soga K, Yoshimura M (2008) J Mater Sci 43:2348. doi:https://doi.org/10.1007/s10853-007-1989-8

    Article  CAS  Google Scholar 

  11. Hongbo F, Tongguang X, Shengbao Z, Yongfa Z (2008) Environ Sci Technol 42:8064

    Article  Google Scholar 

  12. Tamas S, Otto B, Imre D (2005) Carbon 43:3181

    Article  Google Scholar 

  13. Hae KJ, Leyla C, Mei HJ, Per AG, Kevin ES, Young HL (2008) Chem Phys Lett 460:499

    Article  Google Scholar 

  14. Lerf A, Buchsteiner A, Pieper J, Schottl S, Dekany I, Szabo T, Boehm HP (2006) J Phys Chem Solids 67:1106

    Article  CAS  Google Scholar 

  15. Hummers WS Jr, Offeman RE (1958) J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  16. Tamas S, Etelka T, Erzsebet I, Imre D (2006) Carbon 44:537

    Article  Google Scholar 

  17. Han Y, Lu Y (2008) Synth Met 158(19–20):744

    Article  CAS  Google Scholar 

  18. Jiayan X, Yuan H, Lei S, Qingan W, Weicheng F (2002) Carbon 40:2961

    Article  Google Scholar 

  19. Xiao P, Xiao M, Liu PG, Gong KC (2000) Carbon 38:623

    Article  Google Scholar 

  20. Satoshi Y, Hiroaki I (2002) J Mater Chem 12:3773

    Article  Google Scholar 

  21. Tetsuo K, Hiroaki I (2005) J Cryst Growth 283:490

    Article  Google Scholar 

  22. Yinhong Z, Yunqiu H (2007) Front Mater Sci China 1(3):297

    Google Scholar 

  23. Reenamole G, Michael KS, Suresh CP (2008) J Phys Chem C 112:13563

    Article  Google Scholar 

  24. Xu F, Yuan Z-Y, Du G-H, Halasa M, SU B-L (2007) Appl Phys A 86:181

    Article  CAS  Google Scholar 

  25. Domenech J, Prieto A (1986) J Phys Chem 90(6):1123

    Article  CAS  Google Scholar 

  26. Matsuo Y, Hatase K, Sugie Y (1997) Carbon 35:113

    Article  CAS  Google Scholar 

  27. Rudd AL, Berslin CB (2000) Electrochim Acta 45:1571

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Number 50672066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqiu He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., He, Y., Zhang, Q. et al. Fabrication of sandwich-structured ZnO/reduced graphite oxide composite and its photocatalytic properties. J Mater Sci 45, 953–960 (2010). https://doi.org/10.1007/s10853-009-4025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4025-3

Keywords

Navigation