Skip to main content
Log in

Inhomogeneous deformation of crystalline skeleton of syndiotactic polypropylene under uniaxial stretching

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Structure changes of syndiotactic polypropylene (sPP) under uniaxial stretching are studied with the combination of micro-tensile tester and in situ wide angle X-ray diffraction (WAXD) measurement. Lamellae stacked “vertically” and “parallel” to the stretching direction (defined as “V” and “P” part) are separated on the basis of two-dimensional WAXD patterns. For all samples with different lamellar thickness, two critical points named as b 1 and b 2 were found in the stress–strain curves, while b 1 and b 2 points are the onsets of the rotation for the lamellae of “V” part and “P” part, respectively. The corresponding true stress and true strain for b 2 point are bigger than that of b 1 , demonstrating that for samples with initial isotropic lamellar orientation, inhomogeneous deformation of crystalline skeleton induced by uniaxial stretching is universal. And after b 1 point, “stress-induced melting” always occurs simultaneously with lamellar slips. Furthermore, the relationship between lamellar thickness and the true stress for b 1 and b 2 point was also studied, illustrating a linear correlation between ln σ and 1/l (σ is the corresponding true stress, l is the lamellar thickness), consistent with Young’s model. However, the critical true strains for these two points did not change with the varying thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nakatani AI, Dadmun MD (1995) Flow induced structure in polymers. American Chemical Society, Washington DC

    Book  Google Scholar 

  2. Meijer HEH, Govaert LE (2005) Prog Polym Sci 30:915

    Article  CAS  Google Scholar 

  3. Govaert LE, Engels TAP, Klompen ETJ, Peters GWM, Meijer HEH (2005) Int Polym Process 20:170

    CAS  Google Scholar 

  4. Ran S, Zong X, Fang D, Hsiao BS, Chu B, Phillips RA (2001) Macromolecules 34:2569

    Article  CAS  Google Scholar 

  5. Kawakami D, Ran S, Burger C, Fu B, Sics I, Chu B, Hsiao BS (2003) Macromolecules 36:9275

    Article  CAS  Google Scholar 

  6. De Rosa C, Ruiz de Ballesteros O, Auriemma F (2004) Macromolecules 37:7724

    Article  Google Scholar 

  7. De Rosa C, Auriemma F, Ruiz de Ballesteros O (2006) Phys Rev Lett 96:167801

    Article  Google Scholar 

  8. Men Y, Strobl G (2001) J Macromol Sci B 40:775

    Article  Google Scholar 

  9. Men Y, Rieger J (2003) Phys Rev Lett 91:095502

    Article  Google Scholar 

  10. Liu LZ, Hsiao BS, Fu BX, Ran SF, Toki S, Chu B, Tsou AH, Agarwal PK (2003) Macromolecules 36:1920

    Article  CAS  Google Scholar 

  11. Ma Z, Shao C, Wang X, Zhao B, Li X, An H, Yan T, Li Z, Li L (2009) Polymer 50:2706

    Article  CAS  Google Scholar 

  12. Shao C, An H, Wang X, Jia R, Zhao B, Ma Z, Li X, Pan G, Li L (2007) Macromolecules 40:9475

    Article  CAS  Google Scholar 

  13. Tosaka M, Kavakami D, Senoo K, Kohjiya S, Ikeda Y, Toki S, Hsiao BS (2006) Macromolecules 39:5100

    Article  CAS  Google Scholar 

  14. Toki S, Sics I, Ran SF, Liu LZ, Hsiao BS (2002) Macromolecules 35:6578

    Article  CAS  Google Scholar 

  15. Sadler DM, Barham PJ (1990) Polymer 31:36

    Article  CAS  Google Scholar 

  16. Sadler DM, Barham PJ (1990) Polymer 31:43

    Article  CAS  Google Scholar 

  17. Sadler DM, Barham PJ (1990) Polymer 31:46

    Article  CAS  Google Scholar 

  18. Gakeski A (2003) Prog Polym Sci 28:1643

    Article  Google Scholar 

  19. Hay IL, Keller A (1965) Kolloid Z Z Polym 204:43

    Article  CAS  Google Scholar 

  20. Butler MF, DonalD AM (1997) J Mater Sci 32:3675. doi:10.1023/A:1018642732686

    Article  CAS  Google Scholar 

  21. Peterlin A, Corneliussen R (1968) J Polym Sci A6:1273

    Google Scholar 

  22. Nozue Y, Shinohara Y, Ogawa Y, Sakurai T, Hori H, Kasahara T, Yamaguchi N, Yagi N, Amemiya Y (2007) Macromolecules 40:2036

    Article  CAS  Google Scholar 

  23. Séguéla R, Darras O (1994) J Mater Sci 29:5342. doi:10.1007/BF01171546

    Article  Google Scholar 

  24. Schrauwen BAG, Janssen RPM, Govaert LE, Meijier HEH (2004) Macromolecules 37:6069

    Article  CAS  Google Scholar 

  25. Cowking A, Rider JG (1969) J Mater Sci 4:1051. doi:10.1007/BF00549843

    Article  CAS  Google Scholar 

  26. Bowden PB, Young RJ (1974) J Mater Sci 9:2034. doi:10.1007/BF00540553

    Article  CAS  Google Scholar 

  27. Hay IL, Keller A (1966) J Mater Sci 1:41. doi:10.1007/BF00549719

    Article  CAS  Google Scholar 

  28. Hay IL, Keller A (1967) J Mater Sci 2:538. doi:10.1007/BF00752220

    Article  CAS  Google Scholar 

  29. Keller A, Pope DP (1971) J Mater Sci 6:453. doi:10.1007/BF00550302

    Article  CAS  Google Scholar 

  30. Peterlin A (1971) J Mater Sci 6:490. doi:10.1007/BF00550305

    Article  CAS  Google Scholar 

  31. Men Y, Strobl G (2003) Macromolecules 36:1889

    Article  CAS  Google Scholar 

  32. Men Y, Rieger J, Lindner R, Enderle HF, Lilge D, Kristen MO, Mihan S, Jiang S (2007) Polymer 48:2464

    Article  CAS  Google Scholar 

  33. Flory PJ, Yoon DY (1978) Nature 272:226

    Article  CAS  Google Scholar 

  34. Wu W, Wignal GD, Mandelkern L (1992) Polymer 33:4137

    Article  CAS  Google Scholar 

  35. Men Y, Strobl G (2002) Chinese J Polym Sci 20:161

    CAS  Google Scholar 

  36. Hiss R, Hobeika S, Lynn C, Strobl G (1999) Macromolecules 32:4390

    Article  CAS  Google Scholar 

  37. Wu J, Buckley CP (2004) J Polym Sci B 42:2027

    Article  CAS  Google Scholar 

  38. Klompen ETJ, Govaert LE, Engels TAP, Breemen LCA, Schreurs PJG, Meijier HEH (2005) Macromolecules 38:7009

    Article  CAS  Google Scholar 

  39. Schneider K (2010) J Polym Sci B 48:1574

    Article  CAS  Google Scholar 

  40. Ran S, Zong X, Fang D, Hsiao BS, Chu B (2001) J Mater Sci 36:3071. doi:10.1023/A:1017953412385

    Article  CAS  Google Scholar 

  41. Zuo F, Keum JK, Chen X, Hsiao BS, Chen H, Lai SY, Wevers R, Li J (2007) Polymer 48:6867

    Article  CAS  Google Scholar 

  42. Ran S, Wang Z, Burger C, Chu B, Hsiao BS (2002) Macromolecules 35:10102

    Article  CAS  Google Scholar 

  43. Kawakami D, Hsiao BS, Ran S, Burger C, Fu B, Sics I, Sics I, Chu B, Kikutani T (2004) Polymer 45:905

    Article  CAS  Google Scholar 

  44. Wang Z, Hsiao BS, Srinivas S, Brown GM, Tsou AH, Cheng SZD, Stein RS (2001) Polymer 42:7561

    Article  CAS  Google Scholar 

  45. Qiu J, Wang Z, Yang L, Zhao J, Niu Y, Hsiao BS (2007) Polymer 48:6934

    Article  CAS  Google Scholar 

  46. Martins CI, Cakmak M (2005) Macromolecules 38:4260

    Article  CAS  Google Scholar 

  47. Friedrich K (1980) J Mater Sci 15:258. doi:10.1007/BF00552457

    Article  CAS  Google Scholar 

  48. Peterlin A, Meinel G (1971) Makromol Chem 142:227

    Article  CAS  Google Scholar 

  49. Young RJ (1976) Philos Mag 30:86

    Google Scholar 

  50. Young RJ (1988) Mater Forum 11:210

    CAS  Google Scholar 

  51. Darras O, Séguéla R (1993) J Polym Sci B 31:759

    Article  CAS  Google Scholar 

  52. Brooks MW, Ghazali M, Duckett RA, Unwin AP, Ward IM (1999) Polymer 40:821

    Article  CAS  Google Scholar 

  53. Schrauwen BAG, Janssen RPM, Govaert LE, Meijier HEH (2004) Macromolecules 37:6069

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors like to express their sincere thanks to the National Natural Science Foundation of China for financial support (Grant No.51103138) and thanks also go to Prof. Liangbin Li at the National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China for his help during synchrotron 2D-WAXD experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunguang Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, C., Ma, Z., Zhuo, R. et al. Inhomogeneous deformation of crystalline skeleton of syndiotactic polypropylene under uniaxial stretching. J Mater Sci 47, 3334–3343 (2012). https://doi.org/10.1007/s10853-011-6173-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6173-5

Keywords

Navigation