Skip to main content
Log in

Diamond–metal interfaces in cutting tools: a review

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article reviews studies undertaken on diamond cutting tools, with particular regard to the characteristics and performance of diamond/metal interfaces. The affinity of carbon to metals, as well as the wettability of diamond by molten metals, and the advantage of using coated diamonds under certain cutting conditions, are described. The choice of the appropriate metallic matrix in the field of both impregnated and brazed diamond tools is discussed in terms of the diamond/alloy interface, mechanical properties of the segment, diamond wear speed, and desired cutting performance. The effect of several principal elements and elements added in minor amounts to the metallic matrix is critically evaluated. Relevant open questions, related to the optimization of cutting tools performance, are outlined, with special attention directed toward the need for advanced fundamental studies on the functional link between work of adhesion and work of fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tönshoff HK, Hillmann-Apmann H, Asche J (2002) Diam Relat Mater 11:736

    Article  Google Scholar 

  2. Sung JC, Sung M (2009) Int J Refract Met Hard Mater 27:382

    Article  CAS  Google Scholar 

  3. Sung CM (1999) Diam Relat Mater 8:1540

    Article  CAS  Google Scholar 

  4. Zeren M, Karagöz Ş (2007) Mater Des 28:1055

    Article  CAS  Google Scholar 

  5. Moriguchi H, Tsuduki K, Ikegaya A, Miyamoto Y, Morisada Y (2007) Int J Refract Met Hard Mater 25:237

    Article  CAS  Google Scholar 

  6. Tillmann W, Gathen M, Vogli E, Kronholz C (2007) Met Powder Rep 62:43

    Article  Google Scholar 

  7. Karagöz Ş, Zeren M (2001) Int J Refract Met Hard Mater 19:23

    Article  Google Scholar 

  8. Lison D (1996) Crit Rev Toxicol 26:585

    Article  CAS  Google Scholar 

  9. Léonard A, Lauwerys R (1990) Mutat Res Rev Genet Toxicol 239:17

    Article  Google Scholar 

  10. Gál J, Hursthouse A, Tatner P, Stewart F, Welton R (2008) Environ Int 34:821

    Article  Google Scholar 

  11. Naidich JV (1981) In: Danielli JF, Cadenhead DA (eds) Progress in surface and membrane science. Academic Press, New York, p 354

    Google Scholar 

  12. Naidich JV, Kolesnichenko GA (1965) In: Belyaev AI (ed) Surface phenomena in metallurgical processes. Consultants Bureau, New York, p 218

    Google Scholar 

  13. Siddiq A, Schmauder S, Rühle M (2008) Eng Fract Mech 75:2320

    Article  Google Scholar 

  14. Lipkin DM, Clarke DR, Evans AG (1998) Acta Mater 46:4835

    Article  CAS  Google Scholar 

  15. Alssner G, Korn D, Rühle M (1994) Scr Metall Mater 31:1037

    Article  Google Scholar 

  16. Jokl ML, Vitek V, Mc Mahon CJ Jr (1980) Acta Metall 28:1479

    Article  Google Scholar 

  17. Tanaka T, Ikawa N, Tsuwa H (1981) CIRP Ann Manuf Technol 30:241

    Article  CAS  Google Scholar 

  18. Chatain D (2008) Annu Rev Mater Res 38:45

    Article  CAS  Google Scholar 

  19. Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Pergamon Materials Series, Amsterdam

    Google Scholar 

  20. Sung CM, Tai MF (1997) Int J Refract Met Hard Mater 15:237

    Article  CAS  Google Scholar 

  21. Andreyev AV (1994) Diam Relat Mater 3:1262

    Article  CAS  Google Scholar 

  22. Lux B, Haubner R (1994) Pure Appl Chem 66:1783

    Article  CAS  Google Scholar 

  23. Murai J, Marukawa T, Mima T, Arai S, Sasaki K, Saka H (2006) J Mater Sci 41:2723. doi:10.1007/s10853-006-7875-y

    Article  CAS  Google Scholar 

  24. Klotz UE, Liu C, Khalid FA, Elsener HR (2008) Mater Sci Eng A 495:265

    Article  Google Scholar 

  25. Brook B (2002) Int J Rock Mech Min 39:41

    Article  Google Scholar 

  26. Nitkiewicz Z, Swierzy M (2006) J Mater Process Technol 175:306

    Article  CAS  Google Scholar 

  27. Wu Y, Funkenbusch PD (2010) J Mater Sci 45:251. doi:10.1007/s10853-009-3927-4

    Article  CAS  Google Scholar 

  28. Faber KT, Evans AG (1983) Acta Metall 31:565

    Article  Google Scholar 

  29. Faber KT, Evans AG (1983) Acta Metall 31:577

    Article  Google Scholar 

  30. Tönshoff HK, Hillmann-Apmann H (2002) Diam Relat Mater 11:742

    Article  Google Scholar 

  31. Wang YH, Zang JB, Wang MZ, Guan Y, Zheng YZ (2002) J Mater Process Technol 129:369

    Article  CAS  Google Scholar 

  32. Xu XP, Tie XR, Yu YQ (2007) J Mater Process Technol 187–188:421

    Article  Google Scholar 

  33. Hsieh YZ, Lin ST (2001) Mater Chem Phys 72:121

    Article  CAS  Google Scholar 

  34. Xu X, Tie XR, Wu H (2007) Int J Refract Met Hard Mater 25:244

    Article  CAS  Google Scholar 

  35. Webb SW (1999) Diam Relat Mater 8:2043

    Article  CAS  Google Scholar 

  36. Zeren M, Karagöz Ş (2006) Mater Charact 57:111

    Article  CAS  Google Scholar 

  37. Chattopadhyay AK, Chollet L, Hintermann HE (1991) Surf Coat Technol 45:293

    Article  CAS  Google Scholar 

  38. Elsener HR, Klotz UE, Khalid FA, Piazza D, Kiser M (2005) Adv Eng Mater 7:375

    Article  CAS  Google Scholar 

  39. Huang SF, Tsai HL, Lin ST (2004) Mater Chem Phys 84:251

    Article  CAS  Google Scholar 

  40. Li WC, Liang C, Lin ST (2002) Met Mater Trans A 33:2163

    Article  Google Scholar 

  41. Yamazaki T, Suzumura A (1998) J Mater Sci 33:1379. doi:10.1023/A:1004370919502

    Article  CAS  Google Scholar 

  42. Palavra A, Fernandes AJS, Serra C, Costa FM, Rocha LA, Silva RF (2001) Diam Relat Mater 10:775

    Article  CAS  Google Scholar 

  43. Molinari A, Marchetti F, Gialanella S, Scardi P, Tiziani A (1990) Mater Sci Eng A 130:257

    Article  Google Scholar 

  44. Massalski TB (1986) Binary alloy phase diagrams, vol 1. American Society for Metals, Metals Park, OH, p 556

    Google Scholar 

  45. Berger C, Scheerer H, Ellermeier J (2010) Materialwiss Werkstofftech 41:5

    Article  CAS  Google Scholar 

  46. Loshak MG, Alexandrova LI (2001) Int J Refract Met Hard Mater 19:5

    Article  CAS  Google Scholar 

  47. Lin CS, Yang YL, Lin ST (2008) J Mater Process Technol 201:612

    Article  CAS  Google Scholar 

  48. Huadong D, Yawen L, Hongqi H, Zhihao J (1998) J Mater Process Technol 74:52

    Article  Google Scholar 

  49. De Oliveira LJ, Sergueevitch Bobrovnitchii G, Filgueira M (2007) Int J Refract Met Hard Mater 25:328

    Article  Google Scholar 

  50. Spriano S, Chen Q, Settineri L, Bugliosi S (2005) Wear 259:1190

    Article  CAS  Google Scholar 

  51. Massalski TB (1986) Binary alloy phase diagrams, vol 2. American Society for Metals, Metals Park, OH, p 1766

    Google Scholar 

  52. CNR-IENI Report (2011) Protocol number 0000766

  53. Wang CY, Zhou YM, Zhang FL, Xu ZC (2009) J Alloy Compd 476:884

    Article  CAS  Google Scholar 

  54. Buhl S, Leinenbach C, Spolenak R, Wegener K (2012) Int J Refract Met Hard Mater 30:16

    Article  CAS  Google Scholar 

  55. Khalid FA, Klotz UE, Elsener HR, Zigerlig B, Gasser P (2004) Scr Mater 50:1139

    Article  CAS  Google Scholar 

  56. Howe JM (1993) Int Mater Rev 38:233

    CAS  Google Scholar 

  57. Shiue RK, Buljan ST, Eagar TW (1997) Sci Technol Weld Join 2:71

    CAS  Google Scholar 

  58. Chen SM, Lin ST (1996) J Mater Eng Perform 5:761

    Article  CAS  Google Scholar 

  59. Klotz UE, Khalid FA, Elsener HR (2006) Diam Relat Mater 15:1520

    Article  CAS  Google Scholar 

  60. Buhl S, Leinenbach C, Spolenak R, Wegener K (2010) J Mater Sci 45:4358. doi:10.1007/s10853-010-4260-7

    Article  CAS  Google Scholar 

  61. Yamazaki T, Suzumura A (2006) J Mater Sci 41:6409. doi:10.1007/s10853-006-0707-2

    Article  CAS  Google Scholar 

  62. Ricci E, Battezzati L, Chapman LA, Fecht HJ, Giuranno D, Novakovic R, Seetharaman S, Voss D, Wunderlich R (2009) High Temp High Press 38:43

    CAS  Google Scholar 

  63. Jia CC, Song YQ, Yu M, Wang T (2002) Rare Met 21:90

    CAS  Google Scholar 

  64. Xu XP, Huang WD (1997) J Rare Earth 18:25

    CAS  Google Scholar 

  65. Yang C, Xu J, Ding W, Chen Z, Fu Y (2009) J Rare Earth 27:1051

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Regione Liguria within the Operative Regional Programme FESR 2007-2013 through a contract drawn up with S.D. Diamant srl, Grant CNR-IENI No. 1335. Prof. Wayne Kaplan is gratefully acknowledged for his useful suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Artini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artini, C., Muolo, M.L. & Passerone, A. Diamond–metal interfaces in cutting tools: a review. J Mater Sci 47, 3252–3264 (2012). https://doi.org/10.1007/s10853-011-6164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6164-6

Keywords

Navigation