Skip to main content
Log in

Mechanical properties of sodium and potassium activated metakaolin-based geopolymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, a set of mechanical properties of geopolymers, synthesized by alkali (NaOH or KOH) activation of metakaolin and SiO2 mixture, were characterized at ambient temperature. Samples with K/Al or Na/Al atomic ratios equal to 1, Si/Al atomic ratios in the 1.25–2.5 range and H2O/Al2O3 molar ratios of 11 or 13 are cured at 80 °C for 24 and 48 h before characterization, to determine effect of Si/Al ratio and curing time on the structure and mechanical properties of geopolymers. The structure of synthesized geopolymers characterized using XRD, NMR, SEM, and density measurements was correlated to their mechanical properties, including compressive strength, Young’s modulus, hardness, and fracture toughness. The results of this study suggest a strong effect of Si/Al ratios (in the 1.5–2 range), density, and microstructure on the maximum strength, Young’s modulus, and hardness of geopolymers. There were also notable differences in strength between samples cured for 24 and 48 h, suggesting that the degree of geopolymerization reaction also plays important role in mechanical properties of this new class of inorganic polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Purdon AO (1940) J Soc Chem Ind 59:191

    Article  CAS  Google Scholar 

  2. Glukhovsky VD, Rostovskaja GS, Rumyna GV (1980) Communications of the 7th international congress on the chemistry of cement 3:164

  3. Davidovits J (1991) J Therm Anal 37:1633

    Article  CAS  Google Scholar 

  4. Davidovits J (2008) In: Geopolymer chemistry and applications, Institut Geopolymere Saint-Quentin, France, p 19

  5. Weng L, Sagoe-Crentsil K (2007) J Mater Sci 42:2997. doi:10.1007/s10853-006-0820-2

    Article  CAS  Google Scholar 

  6. Sagoe-Crentsil K, Weng L (2007) J Mater Sci 42:3007. doi:10.1007/s10853-006-0818-9

    Article  CAS  Google Scholar 

  7. Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) J Mater Sci 42:2917. doi:10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  8. Duxson P, Lukey GC, Separovic F, van Deventer JSJ (2005) Ind Eng Chem Res 44:832

    Article  CAS  Google Scholar 

  9. Komnitsas K, Zaharaki D (2007) Miner Eng 20:1261

    Article  CAS  Google Scholar 

  10. Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ (2007) Colloids Surf A 292:8

    Article  CAS  Google Scholar 

  11. Davidovits J (2008) In: Geopolymer chemistry and applications, Institut Geopolymere, Saint-Quentin, France. p 335

  12. Perera DS, Vance ER, Finnie KS, Blackford MG, Hanna JV, Cassidy DJ, Nicholson CL (2006) In: Bansal NP, Singh JP, Kriven WM (eds) Ceramic Transaction, vol 175. John Wiley & Sons, p 225

  13. Blackford MG, Hanna JV, Pike KJ, Vance ER, Perera DS (2007) J Am Ceram Soc 90:1193

    Article  CAS  Google Scholar 

  14. van Jaarsveld JGS, van Deventer JSJ, Lukey GC (2004) Chem Eng Commun 191:531

    Article  Google Scholar 

  15. Yunsheng Z, Wei S, Qianli C, Lin C (2007) J Hazard Mater 143:206

    Article  Google Scholar 

  16. Lee WKW, van Deventer JSJ (2002) Colloids Surf A 211:115

    Article  CAS  Google Scholar 

  17. Oudadesse H, Derrien AC, Lefloch M, Davidovits J (2007) J Mater Sci 42:3092. doi:10.1007/s10853-006-0524-7

    Article  CAS  Google Scholar 

  18. Sofi M, van Deventer JSJ, Mendis PA, Lukey GC (2007) J Mater Sci 42:3107. doi:10.1007/s10853-006-0534-5

    Article  CAS  Google Scholar 

  19. Duxson P, Provis JL, Lukey GC, Van Deventer JSJ (2007) Cem Concr Res 37:1590

    Article  CAS  Google Scholar 

  20. Bell J, Gordon M, Kriven W (2005) Ceram Eng Sci Proc 26:407

    Article  CAS  Google Scholar 

  21. Yong SL, Feng DW, Lukey GC, van Deventer JSJ (2007) Colloids Surf A 302:411

    Article  CAS  Google Scholar 

  22. Gartner E (2004) Cem Concr Res 34:1489

    Article  CAS  Google Scholar 

  23. Hu SG, Wang HX, Zhang GZ, Ding QJ (2008) Cem Concr Compos 30:239

    Article  CAS  Google Scholar 

  24. Andini S, Cioffi R, Colangelo F, Grieco T, Montagnaro F, Santoro L (2008) Waste Manag 28:416

    Article  CAS  Google Scholar 

  25. Provis JL, van Deventer JSJ (2007) Chem Eng Sci 62:2309

    Article  CAS  Google Scholar 

  26. Provis JL (2006) In: Chemical and biomolecular engineering. The University of Melbourne, Melbourne, p 40

  27. Rowles M, O’Connor B (2003) J Mater Chem 13:1161

    Article  CAS  Google Scholar 

  28. Rodriguez E, de Gutierrez RM, Bernal S, Gordillo M (2009) Revista Facultad De Ingenieria-Universidad De Antioquia, p 30

  29. Weng LQ, Sagoe-Crentsil K, Brown T, Song SH (2005) Mater Sci Eng B 117:163

    Article  Google Scholar 

  30. Steveson M, Sagoe-Crentsil K (2005) J Mater Sci 40:2023. doi:10.1007/s10853-005-1226-2

    Article  CAS  Google Scholar 

  31. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Colloids Surf A 269:47

    Article  CAS  Google Scholar 

  32. De Silva P, Sagoe-Crenstil K (2008) J Aust Ceram Soc 44:39

    Google Scholar 

  33. Latella BA, Perera DS, Durce D, Mehrtens EG, Davis J (2008) J Mater Sci 43:2693. doi:10.1007/s10853-007-2412-1

    Article  CAS  Google Scholar 

  34. De Silva P, Sagoe-Crenstil K, Sirivivatnanon V (2007) Cem Concr Res 37:512

    Article  Google Scholar 

  35. de Jong BHWS, Brown GE Jr (1980) Geochim Cosmochim Acta 44:491

    Article  Google Scholar 

  36. Belena I, Zhu W (2009) In: Bittnar Z, Bartos P, Zeman J, Němeček J, Smilauer V (eds) Proceedings of the nanotechnology in construction, vol 3. Springer, Heidelberg, p 169

  37. Nihara K (1991) Nippon Seram Kyo Gak 99:974

    Article  Google Scholar 

  38. Barsoum MW (2003) Fundamentals of ceramics. Taylor & Francis Group, LLC, New York

  39. Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Int J Inorg Mater 2:309

    Article  CAS  Google Scholar 

  40. Davidovits J (2008) In: Geopolymer chemistry and applications. Saint-Quentin, France, p 61

  41. Bell JL, Sarin P, Driemeyer PE, Haggerty RP, Chupas PJ, Kriven WM (2008) J Mater Chem 18:5974

    Article  CAS  Google Scholar 

  42. Davidovits J (2008) In: Geopolymer chemistry and applications. Saint-Quentin, France, p 145

  43. Wang HL, Li HH, Yan FY (2005) Colloids Surf A 268:1

    Article  CAS  Google Scholar 

  44. Lecomte I, Liegeois M, Rulmont A, Cloots R, Maseri F (2003) J Mater Res 18:2571

    Article  CAS  Google Scholar 

  45. Belena I, Tendero MJL, Tamayo EM, Vie D (2004) Boletin De La Sociedad Espanola De Ceramica Y Vidrio 43:569

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research study was sponsored by Texas Engineering Experimental Station, TEES. The authors are grateful for the help with NMR characterization to Dr. Vladimir Bakhmoutov from Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miladin Radovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lizcano, M., Kim, H.S., Basu, S. et al. Mechanical properties of sodium and potassium activated metakaolin-based geopolymers. J Mater Sci 47, 2607–2616 (2012). https://doi.org/10.1007/s10853-011-6085-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6085-4

Keywords

Navigation